摘要:
A device including a p-type semiconductor device and an n-type semiconductor device on a semiconductor substrate. The n-type semiconductor device includes a gate structure having a high-k gate dielectric. A carbon dopant in a concentration ranging from 1×1016 atoms/cm3 to 1×1021 atoms/cm3 is present at an interface between the high-k gate dielectric of the gate structure for the n-type semiconductor device and the semiconductor substrate. Methods of forming the aforementioned device are also disclosed.
摘要:
An eFuse, includes: a substrate and an insulating layer disposed on the substrate; a first layer including a single crystal or polycrystalline silicon disposed on the insulating layer; a second layer including a single crystal or polycrystalline silicon germanium disposed on the first layer, and a third layer including a silicide disposed on the second layer. The Ge has a final concentration in a range of approximately five percent to approximately twenty-five percent.
摘要:
A contiguous block of a stack of two heterogeneous semiconductor layers is formed over an insulator region such as shallow trench isolation. A portion of the contiguous block is exposed to an etch, while another portion is masked during the etch. The etch removes an upper semiconductor layer selective to a lower semiconductor layer in the exposed portion. The etch mask is removed and the entirety of the lower semiconductor layer within the exposed region is metallized. A first metal semiconductor alloy vertically abutting the insulator region is formed, while exposed surfaces of the stack of two heterogeneous semiconductor layers, which comprises the materials of the upper semiconductor layer, are concurrently metallized to form a second metal semiconductor alloy. An inflection point for current and, consequently, a region of flux divergence are formed at the boundary of the two metal semiconductor alloys.
摘要:
A contiguous block of a stack of two heterogeneous semiconductor layers is formed over an insulator region such as shallow trench isolation. A portion of the contiguous block is exposed to an etch, while another portion is masked during the etch. The etch removes an upper semiconductor layer selective to a lower semiconductor layer in the exposed portion. The etch mask is removed and the entirety of the lower semiconductor layer within the exposed region is metallized. A first metal semiconductor alloy vertically abutting the insulator region is formed, while exposed surfaces of the stack of two heterogeneous semiconductor layers, which comprises the materials of the upper semiconductor layer, are concurrently metallized to form a second metal semiconductor alloy. An inflection point for current and, consequently, a region of flux divergence are formed at the boundary of the two metal semiconductor alloys.
摘要:
A semiconductor structure. The semiconductor structure includes: a first semiconductor region and a second semiconductor region; a first gate dielectric region on the first semiconductor region; a second gate dielectric region on the second semiconductor region, wherein the second semiconductor region includes a first top surface shared by the second semiconductor region and the second gate dielectric region, and wherein the first top surface defines a reference direction perpendicular to the first top surface and pointing from inside to outside of the second semiconductor region; an electrically conductive layer on the first gate dielectric region; a first poly-silicon region on the electrically conductive layer; a second poly-silicon region on the second gate dielectric region; a first hard mask region on the first poly-silicon region; and a second hard mask region on the second poly-silicon region.
摘要:
A method is provided for fabricating a field effect transistor (“FET”) having a channel region in a semiconductor-on-insulator (“SOI”) layer of an SOI substrate. Desirably, in such method, a sacrificial stressed layer is formed to overlie a first portion of an active semiconductor region but not overlie second portion of the active semiconductor region which shares a common boundary with the first portion. After forming trenches in the SOI layer, the SOI substrate is heated with the stressed layer thereon sufficiently to cause the stressed layer to relax, thereby causing the stressed layer to apply a first stress to the first portion and to apply a second stress to the second portion. For example, when the first stress is tensile, the second stress is compressive, or the first stress can be compressive when the second stress is tensile. Desirably, the stressed layer is then removed to expose the first and second portions of the active semiconductor region. Desirably, the field effect transistor (“FET”) is formed to include (i) a source region in the first portion, (ii) a drain region in the first portion, and (iii) a channel region in the second portion.
摘要:
An integration scheme that enables full silicidation (FUSI) of the nFET and pFET gate electrodes at the same time as that of the source/drain regions is provided. The FUSI of the gate electrodes eliminates the gate depletion problem that is observed with polysilicon gate electrodes. In addition, the inventive integration scheme creates different silicon thicknesses of the gate electrode just prior to silicidation. This feature of the present invention allows for fabricating nFETs and pFETs that have a band edge workfunction that is tailored for the specific device region.
摘要:
A semiconductor gate stack comprising a silicon oxide based gate dielectric and a doped semiconductor material is formed on a semiconductor substrate. A high-k material metal gate electrode comprising a high-k gate dielectric and a metal gate portion is also formed on the semiconductor substrate. Oxygen-impermeable dielectric spacers are formed on the sidewalls of the semiconductor gate stack and the high-k material metal gate stack. The oxygen-impermeable dielectric spacer on the semiconductor gate stack is removed, while the oxygen impermeable dielectric spacer on the high-k material metal gate electrode is preserved. A low-k dielectric spacer is formed on the semiconductor gate stack, which provides a low parasitic capacitance for the device employing the semiconductor gate stack.
摘要:
An integrated eFUSE device is formed by forming a silicon “floating beam” on air, whereupon the fusible portion of the eFUSE device resides. This beam extends between two larger, supporting terminal structures. “Undercutting” techniques are employed whereby a structure is formed atop a buried layer, and that buried layer is removed by selective etching. Whereby a “floating” silicide eFUSE conductor is formed on a silicon beam structure. In its initial state, the eFUSE silicide is highly conductive, exhibiting low electrical resistance (the “unblown state of the eFUSE). When a sufficiently large current is passed through the eFUSE conductor, localized heating occurs. This heating causes electromigration of the silicide into the silicon beam (and into surrounding silicon, thereby diffusing the silicide and greatly increasing its electrical resistance. When the current source is removed, the silicide remains permanently in this diffused state, the “blown” state of the eFUSE.
摘要:
A method for engineering stress in the channels of MOS transistors of different conductivity using highly stressed nitride films in combination with selective semiconductor-on-insulator (SOI) device architecture is described. A method of using compressive and tensile nitride films in the shallow trench isolation (STI) process is described. High values of stress are achieved when the method is applied to a selective SOI architecture.