Abstract:
A system for cancellation of a reciprocal-mixing noise may comprise a down-converter mixer that may be configured to down convert a radio-frequency (RF) signal and to generate a baseband signal. The RF signal may include a desired signal and a blocker signal. A first signal path may be configured to receive the baseband signal and to generate a first signal. A second signal path may be configured to receive the baseband signal and to generate a second signal. A subtraction module may be configured to subtract the second signal from the first signal and to generate an output signal. The second signal may comprise the reciprocal-mixing noise, and the output signal may comprise the desired signal substantially free from the reciprocal-mixing noise.
Abstract:
An apparatus includes a dynamically configurable transformer configured to provide a gain to a target signal. The gain is dynamically configurable. The dynamically configurable transformer includes at least one parallel resistive element configured to be dynamically activated in parallel with a load.
Abstract:
A method for reciprocal-mixing noise cancellation may include receiving, from a first mixer, a first signal comprising a wanted signal at a first frequency and a modulated signal at a second frequency. The modulated signal may be a product of a reciprocal-mixing of an unwanted signal with a phase noise. The second frequency may be greater than the first frequency, and at least a portion of the modulated signal may overlap the wanted signal, adding a reciprocal-mixing noise to the wanted signal. Using the first signal, a narrow second signal may be generated at a third frequency, twice the second frequency. At a second mixer, the second signal may be mixed with the first signal to generate a third signal. The third signal may be subtracted from the first signal to remove a reciprocal-mixing noise and to generate the wanted signal at the first frequency without the reciprocal-mixing noise.
Abstract:
A high quality factor frequency translated bandpass filter (FTBPF) with harmonic rejection includes multiple transconductance cells configured to convert a received radio frequency (RF) voltage signal into respective RF current signals. Each of the transconductance cells are weighted such that the FTBPF has an effective transconductance of a first magnitude for frequency components of the received RF voltage signal arising from a first harmonic and an effective transconductance of a second magnitude less than the first magnitude for frequency components of the received RF voltage signal arising from harmonics at integer multiples of the first harmonic. The FTBPF also includes multiple frequency conversion cells coupled to the transconductance cells and configured to mix respective ones of the RF current signals with multiple non-overlapping local oscillator signals. The FTBPF also includes multiple baseband impedances coupled to outputs of the frequency conversion cells and ground and are frequency translated by mixed signals from the frequency conversion cells.
Abstract:
A SAW-less receiver includes an FEM interface module, an RF to IF receiver section, and a receiver IF to baseband section. The RF to IF receiver section includes a mixing module, a mixed buffer section, and a frequency translated BPF (FTBPF) circuit module. The mixing module converts an inbound RF signal into an in-phase (I) mixed signal and a quadrature (Q) mixed signal. The mixed buffer section filters and buffers the I mixed signal and filter and buffer the Q mixed signal. The FTBPF circuit module frequency translates a baseband filter response to an IF filter response such that the FTBPF circuit module filters undesired signal components of the IF I signal and the IF Q signal to produce an inbound IF signal. The receiver IF to baseband section converts the inbound IF signal into one or more inbound symbol streams.
Abstract:
A power distributing duplexer system is provided. In some aspects, the system includes a duplexer configured to couple an antenna to a transmitter and a receiver. The system also includes a balancing network coupled to the duplexer. The balancing network includes a network impedance. The balancing network is configured to adjust the network impedance to match an antenna impedance of the antenna. The balancing network includes a plurality of balancing network modules coupled to the duplexer. Each of the plurality of balancing network modules is configured to receive a portion of an output voltage from the duplexer.
Abstract:
A circuit for an oscillator with common-mode resonance includes a first oscillator circuit and a second oscillator circuit coupled to the first oscillator circuit. Each of the first oscillator circuit or the second oscillator circuit includes a tank circuit, a cross-coupled transistor pair, and one or more capacitors. The tank circuit is formed by coupling a first inductor with a pair of first capacitors. The cross-coupled transistor pair is coupled to the tank circuit, and one or more second capacitors are coupled to the tank circuit and the cross-coupled transistor pair. Each of the first oscillator circuit or the second oscillator circuit allows tuning of a respective common mode (CM) resonance frequency (FCM) to be at twice a respective differential resonance frequency (FD).
Abstract:
A circuit for a low-loss duplexer with noise cancellation in a receive (RX) path of a transceiver includes a duplexer, a balancing network, and a noise cancellation circuit. The duplexer circuit is coupled to an antenna of the transceiver. The balancing network is coupled to the duplexer and provides an impedance matching an impedance associated with the antenna. The noise cancellation circuit senses a noise signal generated by the balancing network and uses the sensed noise signal to improve a signal-to-noise ratio (SNR) of the RX path.
Abstract:
A programmable transmitter circuit may be coupled to a controller circuit. The controller circuit may be configured to generate control signals based at least on a signal. The transmitter circuit may include a plurality of unit cells. Each unit cell may include a respective first current source and a respective second current source. Each unit cell may be configured to be set in an activated state or a deactivated state based at least on the control signals. For a unit cell of the plurality of unit cells, when the unit cell is set in the activated state, the respective first current source or the respective second current source may be configured to generate a current to be applied to a load.
Abstract:
The present disclosure is directed to an apparatus and method for cancelling self-interference caused by full-duplex communication. In a full-duplex communication device, the receiver will generally experience significant self-interference from the full-duplex communication device's own transmitter transmitting a strong outbound signal over the same channel that the receiver is to receive a weak inbound signal. The apparatus and method are configured to adjust a phase and gain of the outbound signal provided at the output of a power amplifier (PA) and inject the phase and gain adjusted outbound signal at the input of a low-noise amplifier (LNA) to cancel the interference from the outbound signal in the inbound signal.