Abstract:
A method for determining rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may include injecting a test pulse into one or more idle phases of the SR machine, determining a decoupled flux value based at least partially on a total flux value corresponding to the test pulse and a mutual flux value, and determining the rotor position based at least partially on the decoupled flux value.
Abstract:
A control system is provided for an electric machine having a rotor and a stator. The control system has a converter circuit in electrical communication with the stator and a controller in electrical communication with the converter circuit. The controller is configured to receive a first signal indicating a torque applied to or output by the rotor and receive a second signal indicating a rotational speed of the rotor. The controller is also configured to determine at least one characteristic of a pulse signal based on at least one of the first or second signal. The controller is also configured to inject the pulse signal into one or more phases of the stator via the converter circuit according to the determined at least one characteristic. The controller is also configured to determine a position of the rotor based on the injected pulse signal.
Abstract:
A control system for a multi-phase switched reluctance (SR) machine, having at least two phases, is disclosed. The control system may include a converter circuit and a controller. The controller may include a phase voltage estimator module configured to determine a first phase voltage and a second phase voltage associated with a second phase second phase for the SR machine. The controller may further include a flux estimator module configured to determine first and second estimated fluxes, the first estimated flux associated with the first phase and based on the first phase voltage and an associated first mutual voltage and the second estimated flux the second estimated flux associated with the second phase and based on the second phase voltage and an associated second mutual voltage, and a position observer module configured to determine a rotor position based at least partially on the first estimated flux, the second mutual flux.
Abstract:
A control system for a multi-phase switched reluctance (SR) machine, having at least two phases, is disclosed. The control system may include a converter circuit and a controller. The controller may include a phase voltage estimator module configured to determine a first phase voltage and a second phase voltage associated with a second phase second phase for the SR machine. The controller may further include a flux estimator module configured to determine first and second estimated fluxes, the first estimated flux associated with the first phase and based on the first phase voltage and an associated first mutual voltage and the second estimated flux the second estimated flux associated with the second phase and based on the second phase voltage and an associated second mutual voltage, and a position observer module configured to determine a rotor position based at least partially on the first estimated flux, the second mutual flux.
Abstract:
The present disclosure is directed to an electric drive. The electric drive may include a first power inverter, a second power inverter, and a positive DC bus connecting the first power inverter and the second power inverter. The electric drive may also include a first switch connected to the positive DC bus between the first power inverter and the second power inverter. The electric drive may include a second switch connected to the positive DC bus between the first power inverter and the second power inverter. The electric drive may further include a control unit connected to the first switch and to the second switch. The control unit may be configured to selectively allow current to pass through the first switch and the second switch.
Abstract:
A method for detecting a phase imbalance of an electrical component in a machine due to an actual fault is provided. The method includes receiving electrical parameter values associated with a plurality of phases of an electrical component, detecting a phase imbalance in the plurality of phases, calculating an imbalance ratio of the plurality of phases, applying a plurality of conditions to the imbalance ratio and to the received input vector, the plurality of conditions being associated with an actual fault in the machine, and determining whether the detected phase imbalance is due to a controls induced imbalance in the machine or due to the actual fault in the electrical component of the machine when at least one of the plurality of conditions is met.
Abstract:
A method for detecting a phase imbalance of an electrical component in a machine due to an actual fault is provided. The method includes receiving electrical parameter values associated with a plurality of phases of an electrical component, detecting a phase imbalance in the plurality of phases, calculating an imbalance ratio of the plurality of phases, applying a plurality of conditions to the imbalance ratio and to the received input vector, the plurality of conditions being associated with an actual fault in the machine, and determining whether the detected phase imbalance is due to a controls induced imbalance in the machine or due to the actual fault in the electrical component of the machine when at least one of the plurality of conditions is met.
Abstract:
A method of debouncing a variable frequency step signal is provided. The method includes the steps of: (a) determining a first period in oscillations of the variable frequency step signal and applying a first debounce time to debounce oscillations in the variable frequency step signal, (b) detecting a second period in the oscillations of the variable frequency step signal, (c) calculating a second debounce time as a fraction of the first period, (d) applying the second debounce time to debounce oscillations having the second period, and (e) repeating the steps (b)-(d) for debouncing successive oscillations of varying periods in the variable frequency step signal.
Abstract:
A method of controlling a motor is provided. The method may determine one of a switching period, a fundamental cycle, and a current target per phase leg of the motor having at least one high voltage transition point; determine a dwell period to be enforced at the transition point between an engagement of a first switch of the phase leg and an engagement of a second switch of the phase leg where each of the first switch and the second switch may be selectively engageable between a first state and a second state; engage the first switch from the first state to the second state at the transition point; and engage the second switch from the first state to the second state after the transition point and upon expiration of the dwell period.