Abstract:
A voltage providing circuit includes: a first voltage providing circuit, for generating a first voltage; a switch device, for receiving a first voltage; a second voltage providing circuit, for providing a second voltage; a control circuit, for controlling the switch device and the second voltage providing circuit, wherein in a first mode, the control circuit turns off the switch device for allowing a target device to receive the second voltage, and in a second mode, the control circuit turns on the switch device and stops the second voltage providing circuit from providing the second voltage such that the target device can receive the first voltage; and an adjusting circuit, for providing a reference voltage to the first voltage providing circuit according to the first voltage and the second voltage for changing the first voltage, thereby making the first voltage substantially equal to the second voltage.
Abstract:
A voltage booster and a memory structure using the same are provided. When a data storage unit in the memory structure is in normal operation, all voltage pumps in the voltage booster are turned on for boosting a supply voltage. However, when the data storage unit is in standby state, in the voltage booster, some voltage pumps are turned on while other voltage pumps are turned off, for boosting the supply voltage. Accordingly, the standby current and power consumption are reduced and the pump efficiency is improved.
Abstract:
A heat-dissipating fan module of an electronic apparatus is disclosed. The heat-dissipating fan module includes a casing having an opening, the opening having a guiding device along an edge thereof, and a heat-dissipating fan fixed to one side of the casing and correspondingly disposed on the opening.