摘要:
A process for fabricating a lateral photodiode element, for an image sensor cell, with an increased depletion region, has been developed. The process features protecting a portion of the semiconductor substrate from ion implantation procedures used to create the P well, and the N well components of the lateral photodiode element. The protected region, or the space between the P well and N well regions, allows a larger depletion region to be realized, when compared to lateral photodiode elements in which the N well and P well regions butt. The space between the P well and N well regions, between about 0.2 to 0.4 um, result in the desired P well—intrinsic or P type semiconductor substrate—N well, (P-I-N), lateral photodiode element.
摘要:
A method includes forming an opening extending from a back surface of a semiconductor substrate to a metal pad on a front side of the semiconductor substrate, and forming a first conductive layer including a first portion overlapping active image sensors in the semiconductor substrate, a second portion overlapping black reference image sensors in the semiconductor substrate, and a third portion in the opening to contact the metal pad. A second conductive layer is formed over and contacting the first conductive layer. A first patterning step is performed to remove the first and the second portions of the second conductive layer, wherein the first conductive layer is used as an etch stop layer. A second patterning step is performed to remove a portion of the first portion of the first conductive layer. The second and the third portions of the first conductive layer remain after the second patterning step.
摘要:
An image sensor device includes a semiconductor substrate having a front surface and a back surface, pixels formed on the front surface of the semiconductor substrate, and grid arrays aligned with one of the pixels. One of the grid arrays is configured to allow a wavelength of light to pass through to the corresponding one of the pixels. The grid arrays are disposed overlying the front or back surface of the semiconductor substrate.
摘要:
A semiconductor imager structure having a well region formed in a substrate layer. The well region being of a predetermined shape having a plurality of corners being non-right angles.
摘要:
A semiconductor structure, having a doped well region being formed in a substrate layer and a transistor having a terminal provided within said doped well region. The semiconductor structure also includes an oxide layer formed over the substrate layer, the doped well region, a poly silicon region, and the terminal of the transistor. The oxide layer including a step region being located where a height of the oxide layer transitions from a height associated with the doped well region to a height associated with the terminal of the transistor.
摘要:
A photodiode sensor structure includes a first dopant type substrate with a first surface and a second dopant type well region with a second surface. The second dopant type well region is formed in the first dopant type substrate such that the first surface and the second surface are substantially co-planar to form a diode surface. An interface between the second dopant type well region and the first dopant type substrate at the diode surface forms a diode junction. A poly silicon region is formed along the periphery of the entire diode junction. The poly silicon region provides the p-n junction of the photodiode with a physical shield to prevent any process damage from being introduced after the poly silicon processing (including damages from processes such as dielectric deposition/pattern, metal deposition/pattern, and/or via/contact hole etching), thereby reducing leakage current. The poly silicon region can also provide the p-n junction of the photodiode with an electrical shield to prevent any possible trapped charges at higher levels of dielectric above the junctions to affect the surface potential and/or prevent the formation of conducting channels between the p-n regions, thereby reducing leakage current.
摘要:
A semiconductor imager structure having a photodiode being provided as a well region formed within a substrate layer and a transistor electrically connected to the photodiode and having a terminal that has a same electrical potential as the photodiode. The well region of the photodiode having an extended portion so that at least a portion of the terminal of the transistor has the same electrical potential as the photodiode is formed within the extended portion of the well region of the photodiode.
摘要:
A method for making an array of photodiodes with more uniform optical spectral response for the red, green, and blue pixel cells on a CMOS color imager is achieved. After forming a field oxide on a substrate to electrically isolate device areas for CMOS circuits, an array of deep N doped wells is formed for photodiodes for the long wavelength red pixel cells. An array of P doped well regions is formed adjacent to and interlaced with the N doped wells. Shallow diffused N+ regions are formed within the P doped wells for the shorter wavelength green and blue color pixels cells. The shallow diffused photodiodes improve the quantum efficiency (QE), and provide a color imager with improved color fidelity. An insulating layer and appropriate dye materials are deposited and patterned over the photodiodes to provide the array of color pixel cells. The N and P doped wells are also used for the supporting FET CMOS circuits to provide a cost-effective manufacturing process.
摘要:
A method for making an array of photodiodes with more uniform optical spectral response for the red, green, and blue pixel cells on a CMOS color imager is achieved. After forming a field oxide on a substrate to electrically isolate device areas for CMOS circuits, an array of deep N doped wells is formed for photodiodes for the long wavelength red pixel cells. An array of P doped well regions is formed adjacent to and interlaced with the N doped wells. Shallow diffused N+ regions are formed within the P doped wells for the shorter wavelength green and blue color pixels cells. The shallow diffused photodiodes improve the quantum efficiency (QE), and provide a color imager with improved color fidelity. An insulating layer and appropriate dye materials are deposited and patterned over the photodiodes to provide the array of color pixel cells. The N and P doped wells are also used for the supporting FET CMOS circuits to provide a cost-effective manufacturing process.