Abstract:
A method for ceramming a glass article to a glass-ceramic includes placing a glass article into a heating apparatus, and heating the glass article to a first hold temperature at a first predetermined heating rate. The glass article is held at the first hold temperature for a first predetermined duration. The viscosity of the glass article is maintained within log viscosity ±1.0 poise during the first predetermined duration. The glass article is then heated from the first hold temperature to a second hold temperature at a second predetermined heating rate. The glass article is held at the second hold temperature for a second duration. A density of the glass article is monitored from the heating of the glass article from the first hold temperature through the second duration, and the second duration is ended when an absolute value of a density rate of change of the glass article is less than or equal to 0.10 (g/cm3)/min.
Abstract:
According to one embodiment, a method of manufacturing a glass article having a three-dimensional shape includes heating a glass article blank to a temperature above a setting temperature and coupling the glass article blank to an open-faced mold. The open-faced mold includes a molding region that has a three-dimensional shape that generally corresponds to the shape of the glass article and has an anisothermal temperature profile within the molding region. The method further includes maintaining an anisothermal temperature profile along the glass article blank and cooling the glass article blank while the glass article blank is coupled to the molding region of the open-faced mold to set the shape of the glass article.
Abstract:
A glass sheet is formed on a mold into a glass article having a three-dimensional shape. The mold, with the glass article thereon, is arranged within an interior space of a radiation shield such that the mold is between a leading end barrier and a trailing end barrier of the radiation shield. The mold, glass article, and radiation shield are translated through a sequence of cooling stations while maintaining the mold between the leading and trailing end barriers, wherein the leading and trailing end barriers inhibit radiation heat transfer at leading and trailing ends of the mold.
Abstract:
A mold stack for forming 3D glass-based articles includes a plenum and a cooling structure integrated with the plenum. The mold stack includes a mold with a flange that can be used to mount the mold on the plenum. The mold stack includes features to reduce mold warp without significantly increasing thermal mass.
Abstract:
A process using a three-piece mold for making a three-dimensionally shaped glass article having a flat area and a curved/bend area is disclosed. The process includes placing a glass sheet on a mold having a shaping surface with a desired surface profile for the shaped glass article including a flat area and a bend area, moving a flat area plunger toward the glass sheet to compress the glass sheet, heating a portion of the glass sheet corresponding to an area above the bend area of the mold to a temperature above a forming temperature, and moving a bend area plunger toward the heated glass sheet to compress the heated glass sheet. A temperature of the glass sheet in the area above the bend area of the mold is higher than a temperature of the glass sheet in the area above the flat area of the mold when compressing the heated glass sheet with the bend area plunger.
Abstract:
A glass sheet is formed on a mold into a glass article having a three-dimensional shape. The mold, with the glass article thereon, is arranged within an interior space of a radiation shield such that the mold is between a leading end barrier and a trailing end barrier of the radiation shield. The mold, glass article, and radiation shield are translated through a sequence of cooling stations while maintaining the mold between the leading and trailing end barriers, wherein the leading and trailing end barriers inhibit radiation heat transfer at leading and trailing ends of the mold.
Abstract:
A process using a three-piece mold for making a three-dimensionally shaped glass article having a flat area and a curved/bend area is disclosed. The process includes placing a glass sheet on a mold having a shaping surface with a desired surface profile for the shaped glass article including a flat area and a bend area, moving a flat area plunger toward the glass sheet to compress the glass sheet, heating a portion of the glass sheet corresponding to an area above the bend area of the mold to a temperature above a forming temperature, and moving a bend area plunger toward the heated glass sheet to compress the heated glass sheet. A temperature of the glass sheet in the area above the bend area of the mold is higher than a temperature of the glass sheet in the area above the flat area of the mold when compressing the heated glass sheet with the bend area plunger.
Abstract:
A glass sheet is placed on a mold and heated to a first temperature. The glass sheet is then formed into a glass article having a three-dimensional shape using the mold. An isothermal heat transfer device comprising at least one heat pipe is provided in thermal contact with the mold. With the glass article on the mold and the isothermal heat transfer device in thermal contact with the mold, the glass article, mold, and isothermal heat transfer device are transported along a thermally-graded channel to cool the glass article to a second temperature. During the transporting, the isothermal heat transfer device transfers heat from a relatively hot region of the mold to a relatively cold region of the mold.