摘要:
An AFM based technique has been demonstrated for performing highly localized IR spectroscopy on a sample surface by using the AFM probe to detect wavelength dependent IR radiation interaction, typically absorption with the sample in the region of the tip. The tip may be configured to produce electric field enhancement when illuminated by a radiation source. This enhancement allows for significantly reduced illumination power levels resulting in improved spatial resolution by confining the sample-radiation interaction to the region of field enhancement which is highly localized to the tip.
摘要:
A high-bandwidth SPM tip scanner is provided that additionally includes an objective that is vertically movable within the scan head to increase the depth of focus for the sensing light beam. Movable optics also are preferably provided to permit targeting of the sensing light beam on the SPM's probe and to permit the sensing light beam to track the probe during scanning. The targeting and tracking permit the impingement of a small sensing light beam spot on the probe under direct visual inspection of focused illumination beam of an optical microscope integrated into the SPM and, as a result, permits the use of a relatively small cantilever with a commensurately small resonant frequency. A high-bandwidth tip scanner constructed in this fashion has a fundamental resonant frequency greater than greater than 500 Hz and a sensing light beam spot minor diameter of less than 10 μm. Images can be scanned on large samples having a largest dimension exceeding 7 mm with a resolution of less than 1 Angstrom and while scanning at rates exceeding 30 Hz.
摘要:
An AFM based technique has been demonstrated for performing highly localized IR spectroscopy on a sample surface. Such a technique implemented in a commercially viable analytical instrument would be extremely useful. Various aspects of the experimental set-up have to be changed to create a commercial version. The invention addresses many of these issues thereby producing a version of the analytical technique that cab be made generally available to the scientific community.
摘要:
Dynamic IR radiation power control, beam steering and focus adjustment for use in a nanoscale IR spectroscopy system based on an Atomic Force Microscope. During illumination with a beam from an IR source, an AFM probe tip interaction with a sample due to local IR sample absorption is monitored. The power of the illumination at the sample is dynamically decreased to minimize sample overheating in locations/wavelengths where absorption is high and increased in locations/wavelengths where absorption is low to maintain signal to noise. Beam alignment and focus optimization as a function of wavelength are automatically performed.
摘要:
Dynamic IR radiation power control for use in a nanoscale IR spectroscopy system based on an Atomic Force Microscope. During illumination from an IR source, an AFM probe tip interaction with a sample due to local IR sample absorption is monitored. The power of the illumination at the sample is dynamically decreased to minimize sample overheating in locations/wavelengths where absorption is high and increased in locations/wavelengths where absorption is low to maintain signal to noise.
摘要:
A method and apparatus for its practice are provided of differentiating at least one component of a heterogeneous sample from other component(s) using harmonic resonance imaging and of obtaining information regarding the sample from the differentiation. In a preferred embodiment, an image is created of a property of a harmonic or a combination of a harmonics producing a response having a contrast factor between the sample's constituent components. The desired harmonic(s) can be identified either in a preliminary data acquisition procedure on the sample or, if the sample's constituent components are known in advance, predetermined. The desired harnonic(s) may be identified directly by the user or automatically through, e.g., pattern recognition. A compositional map may then be generated and displayed and/or additional information about the sample may be obtained.
摘要:
A method, and corresponding apparatus, of imaging sub-surface features at a plurality of locations on a sample includes coupling an ultrasonic wave into a sample at a first lateral position. The method then measures the amplitude and phase of ultrasonic energy near the sample with a tip of an atomic force microscope. Next, the method couples an ultrasonic wave into a sample at a second lateral position and the measuring step is repeated for the second lateral position. Overall, the present system and methods achieve high resolution sub-surface mapping of a wide range of samples, including silicon wafers. It is notable that when imaging wafers, backside contamination is minimized.