Abstract:
A conductive atomic force microscope including a plurality of probe structures each including a probe and a cantilever connected thereto, a power supplier applying a bias voltage, a current detector detecting a first current flowing between a sample object and each of the probes and a second current flowing between a measurement object and each of the probes, and calculating representative currents for the sample and measurement objects based on the first and second currents, respectively, and a controller calculating a ratio between representative currents of the sample object measured by each of the probe structures, calculating a scaling factor for scaling the representative current with respect to the measurement object measured by each of the probes, and determine a reproducible current measurement value based on the second measurement current and the scaling factor may be provided.
Abstract:
An AFM based technique has been demonstrated for performing highly localized IR spectroscopy on a sample surface by using the AFM probe to detect wavelength dependent IR radiation interaction, typically absorption with the sample in the region of the tip. The tip may be configured to produce electric field enhancement when illuminated by a radiation source. This enhancement allows for significantly reduced illumination power levels resulting in improved spatial resolution by confining the sample-radiation interaction to the region of field enhancement which is highly localized to the tip.
Abstract:
A new method in microscopy is provided which extends the domain of AFM's to nanoscale spectroscopy. Molecular resonance of nanometer features can be detected and imaged purely by mechanical detection of the force gradient between the interaction of the optically driven molecular dipole/multipole and its mirror image in a Platinum coated scanning probe tip. The method is extendable to obtain nanoscale spectroscopic information ranging from infrared to UV and RF.
Abstract:
A microwave probe having a metal tip on the free end of a microcantilever. In one embodiment, a pyramidal pit is isotropically etched in a device wafer of monocrystalline silicon. Oxidation may sharpen the pit. Deposited metal forms the metal tip in the pit and a bottom shield. Other metal sandwiched between equally thick dielectric layers contact the tip and form a conduction path along the cantilever for the probe and detected signals. Further metal forms a top shield overlying the conduction path and the dielectrically isolated tip and having equal thickness to the bottom shield, thus producing together with the symmetric dielectric layers a balanced structure with reduced thermal bending. The device wafer is bonded to a handle wafer. The handle is formed and remaining silicon of the device wafer is removed to release the cantilever.
Abstract:
An AFM based technique has been demonstrated for performing highly localized IR spectroscopy on a sample surface by using the AFM probe to detect wavelength dependent IR radiation interaction, typically absorption with the sample in the region of the tip. The tip may be configured to produce electric field enhancement when illuminated by a radiation source. This enhancement allows for significantly reduced illumination power levels resulting in improved spatial resolution by confining the sample-radiation interaction to the region of field enhancement which is highly localized to the tip.
Abstract:
The preferred embodiments are directed to a method and apparatus of operating a scanning probe microscope (SPM) including oscillating a probe of the SPM at a torsional resonance of the probe, and generally simultaneously measuring an electrical property, e.g., a current, capacitance, impedance, etc., between a probe of the SPM and a sample at a separation controlled by the torsional resonance mode. Preferably, the measuring step is performed while using torsional resonance feedback to maintain a set-point of SPM operation.
Abstract:
Briefly described, embodiments of this disclosure include near-field scanning measurement-alternating current-scanning electrochemical microscopy devices, near-field scanning measurement-alternating current-scanning electrochemical microscopy systems, methods of using near-field scanning measurement-alternating current-scanning electrochemical microscopy, atomic force measurement-alternating current-scanning electrochemical microscopy (AFM-AC-SECM) devices, AFM-AC-SECM systems, methods of using AFM-AC-SECM, and the like.
Abstract:
A method is described for determining a dopant concentration on a surface and/or in layer region lying close to the surface of a semiconductor sample using an atomic force microscope, whose leaf-spring tip is brought into contact with the semiconductor sample, forming a Schottky barrier, wherein an electric alternating potential is applied between the spring-leaf tip and the semiconductor sample in the region of the Schottky barrier in such a way that a space charge region inside the semiconductor sample defining the three-dimensional extension of the Schottky barrier is excited and begins to oscillate within the confines of its spatial extension, said oscillations are transmitted to the leaf-spring, are detected and form the basis for determining the dopant concentration.
Abstract:
Provided are a semiconductor probe having a resistive tip, a method of fabricating the semiconductor probe, and a method of recording and reproducing information using the semiconductor probe. The semiconductor probe includes a tip and a cantilever. The tip is doped with first impurities. The cantilever has an end portion on which the tip is positioned. The tip includes a resistive area, and first and second semiconductor electrode areas. The resistive area is positioned at the peak of the tip and lightly doped with second impurities that are different from the first impurities. The first and second semiconductor electrode areas are heavily doped with the second impurities and contact the resistive area.
Abstract:
The preferred embodiments are directed to a method and apparatus of operating a scanning probe microscope (SPM) including oscillating a probe of the SPM at a torsional resonance of the probe, and generally simultaneously measuring an electrical property, e.g., a current, capacitance, impedance, etc., between a probe of the SPM and a sample at a separation controlled by the torsional resonance mode. Preferably, the measuring step is performed while using torsional resonance feedback to maintain a set-point of SPM operation.