摘要:
Wireless communication devices for communicating via link aggregation in a heterogeneous wireless communication system are disclosed. One such wireless communication device includes logic configured to establish a first communication path between the wireless communication device and a network element, logic configured to discover a peer-to-peer communication link between the wireless communication device and a proxy access terminal, the wireless device and proxy access terminal being separate individual devices, logic configured to establish a second communication path between the wireless communication device and the network element using the discovered peer-to-peer communication link with the proxy access terminal, logic configured to receive data from the network element via both the first and second communication paths, and logic configured to aggregate the received data.
摘要:
Systems, methods, devices, and computer program products are described for supporting macrocell-to-femtocell hand-ins of active macrocell communications for a mobile device. A mobile device may perform an out-of-band (OOB) search for the femtocell, the OOB search triggered by a proximity detection configuration command from the macrocell. The mobile device may wirelessly communicate with a located femtocell via an OOB link, and receive femtocell information from the femtocell via the OOB link. The mobile device may transmit the received femtocell information to the macrocell. The macrocell may generate instruction for a mobile device search based on the femtocell information. The macrocell may transmit such instructions to the mobile device for an in-band search for the femtocell.
摘要:
Methods, systems, and devices are described that may provide for femtocells to indicate the proximity of mobile user equipments and/or provide mobile identity to assist in resolving femtocell disambiguation. A femtocell may detect a user equipment in its proximity using an out-of-band link. The femtocell may transmit a proximity indication message to a macro network controller via a core network. The macro network may direct the user equipment to perform a variety of tasks, including directing the user equipment to do a handover to the femtocell. Some embodiments may utilize existing user equipment registrations and femto-to-macrocell outbound handover procedures to address problems such as femtocell ambiguity resolution and triggering frequency searches at a macro network when a current macrocell signal strength is good. These embodiments may utilize dummy identifiers to register the user equipment to facilitate addressing these problems.
摘要:
Systems, methods, devices, and computer program products are described for handling of access terminals on an out-of-band piconet within a femto-proxy architecture. A femto-proxy system includes a femtocell (a femto access point, or FAP) and one or more out-of-band (OOB) proxies. One of the OOB proxies is configured to act as a master of an OOB piconet, through which various services are provided, including services to support the femtocell operation of the femto-proxy system. For example, the OOB piconet is used to facilitate lower power access to the macro communications services provided through the femtocell. In some cases, a combination of connected and inactive OOB operational modes are used to support an expanded number of slave access terminals on the piconet, where some of those slaves are operating in an active WWAN mode and others are operating in an idle WWAN mode. For example, parked mode may be used for idle WWAN mode access terminals.
摘要:
A novel power conservation scheme is provided for conserving power in client terminals by using a proxy server. The client terminal may have a secondary communication interface for short range communications and a primary communication interface for long range communications with an access point for a wireless network. To conserve power, the client terminal may power down its primary communication interface without informing the access point. The access point assumes the primary communication interface is still active. Prior to shutting off its primary communication interface, the client terminal may assign an external proxy device to act as a proxy and monitor its data channel with the access point. The proxy device monitors the data channel(s) for the client terminal via a primary communication interface. If the proxy device detects a data message for the client terminal, it forwards the data message to the client terminal via a secondary communication interface.
摘要:
A power conservation scheme is provided for conserving power in an access terminal that includes a dedicated proxy circuit, a receiver/transmitter chain, and/or a baseband processor. The baseband processor is adapted to determine when a wireless communication link with an access network has been inactive for at least a threshold amount of time. If such inactivity is ascertained, the baseband processor sends a proxy request to the proxy circuit. Upon receiving such proxy request, the proxy circuit monitors a data, control, and/or paging channel on behalf of the access terminal while the baseband processor is powered down. If a signal is received for the access terminal over the monitored channel, then a wake-up signal is sent to the baseband processor to cause it to power up and monitor a data channel. Upon receiving a response from the baseband processor, the proxy circuit may stop operating as a proxy.
摘要:
Methods, systems, and devices are described for femtocells to retrieve neighboring macrocells' timing information, using messages from mobile devices that are associated with the relevant macrocell In some cases, detection of the femtocell, such as through an out-of-band detection, may trigger the mobile device to determine timing information with respect to the macrocell and/or the femtocell. In some embodiments, the mobile device associated with the macrocell may be in active state and looking for a candidate femtocell for handover. The femtocell may receive this timing information from the mobile device and utilize it to synchronize with the neighboring macrocell. Embodiments may address fine timing synchronization and tracking for asynchronous and quasi-synchronous wide-area wireless networks (e.g., 3GPP/3GPP2 variants like UMTS, LTE, CDMA 1x, 1x EV-DO, etc).
摘要:
Systems, methods, devices, and computer program products are described for using an out-of-band (OOB) radio integrated with the femtocell to implement various novel proximity detection techniques. Proximity detection of access terminals (ATs) in the femtocell's access control list (ACL) can be desirable to support femto connectivity and service provision, for example, in context of idle macro-to-femto handoffs, active macro-to-femto hand-ins, etc. Implementations implement OOB proximity detection through multicasting directed proximity request messages to each AT in a femtocell's ACL. Responses to the proximity request message can include identification information used to determine the specific AT that is in proximity.
摘要:
Systems, methods, devices, and computer program products are described for using an out-of-band (OOB) radio integrated with the femtocell to implement various novel proximity detection techniques. Proximity detection of access terminals (ATs) in the femtocell's access control list (ACL) may be desirable to support femto connectivity and service provision, for example, in context of idle macro-to-femto handoffs, active macro-to-femto hand-ins, etc. When multiple ATs are in the ACL, and particularly when the ATs have different OOB implementations, optimizing proximity detection may involve balancing reliability against latency. Embodiments implement OOB proximity detection according to techniques that address reliability, efficiency, and/or fairness of proximity detection, even across unmanaged OOB networks and for ATs having different OOB implementations.
摘要:
Systems, methods, devices, and computer program products are described for refinement of femtocell coverage area information in a wireless communication system, particularly in context of a femto-proxy architecture. Zones may be defined within a femtocell coverage area using beacon sources, and a zone map of zone signatures may be defined for each zone of the femtocell coverage area, according to macro signatures detected in those zones. The zone map can be used, by access terminals, the femto-proxy system, and/or the macro network, to provide functionality, including reduced power level femtocell discovery and association, enhanced network planning, improved femtocell troubleshooting, etc.