Abstract:
The acoustic wave processing device includes a phasing addition unit which performs phasing addition on respective pieces of first element data with different elements as a reference to generate a plurality of pieces of first reception data, a reception data storage unit which stores first reception data, a reception data generation unit which superimposes two or more pieces of first reception data to generate second reception data, and a processing condition setting unit which sets the number of times of superimposition of first reception data. In a cine-reproduction mode, the reception data generation unit superimposes the set number of pieces of first reception data to generate second reception data.
Abstract:
An ultrasound inspection apparatus includes a region setting section setting a plurality of regions within the inspection object; a sound velocity calculator calculating a sound velocity of each of the plurality of regions; a sound velocity obtainer obtaining a preliminary sound velocity of a region of interest; and an image quality determiner determining an image quality of the region of interest based on the preliminary sound velocity. The preliminary sound velocity obtained by the sound velocity obtainer is employed as a sound velocity of the region of interest when a determination result made by the image quality determiner is positive, and the sound velocity of the region of interest is calculated by the sound velocity calculator when the determination result is negative.
Abstract:
The present invention provides an ultrasound inspection device, an ultrasound image data generation method, and a computer-readable recording medium in which is stored a program, which determine for each of data calculation points whether or not the distance to a transmission focal point is with a predetermined range, and when the distance from the data calculation point to the transmission focal point is outside the predetermined range, superimposition of a plurality of first element data is carried out assuming an ultrasonic beam to be a convergent wave, and when the distance from the data calculation point to the transmission focal point is within the predetermined range, the superimposition of the plurality of first element data is carried out assuming an ultrasonic beam to be a planar wave to thereby generate second element data corresponding to the data calculation points.
Abstract:
There is provided an ultrasound diagnostic apparatus capable of outputting an appropriate ultrasound image with no distortion regardless of a sound velocity distribution in a subject. In the ultrasound diagnostic apparatus, sound velocities are calculated at two or more points in a subject, and coordinate transformation of a generated ultrasound image is performed based on the calculated sound velocities.
Abstract:
In the ultrasound diagnostic apparatus, the ultrasonic wave transmitter/receiver transmits an ultrasonic beam to a subject, receives an ultrasonic echo that is a reflected ultrasonic beam from the subject, and outputs reception data; and the ambient sound speed calculator acquires first reception data for calculating an ambient sound speed as a sound speed in the subject, which is data of a lower frequency than second reception data for producing a brightness image of the subject, and analyses the acquired first reception data to calculate the ambient sound speed.
Abstract:
An imaging system includes: a light source that emits light toward a flow channel through which a sample containing a cell flows; an imaging sensor that generates an interference fringe image including an interference fringe by imaging light that has passed through the flow channel; and a processor that estimates a cell concentration in the sample based on the interference fringe image or a reconstructed image obtained by reconstructing the interference fringe image, and adjusts the cell concentration in the sample based on an estimated value of the cell concentration.
Abstract:
An imaging apparatus that generates image data including an interference fringe image by imaging an observation object existing in a culture region of a culture container, the imaging apparatus including: a plurality of light sources that irradiate the culture region with illumination light at different irradiation angles; and at least one imaging sensor that generates the image data by imaging an entirety of the culture region each time each of the plurality of light sources irradiates the culture region with the illumination light, in which the imaging apparatus is configured to be taken in and out of a culture room provided in an incubator.
Abstract:
There are included a data-processing-unit that selects two or more pieces of data from among a plurality of pieces of first element data or from among a plurality of pieces of first reception data generated by subjecting the pieces of first element data to phasing addition processing and that performs superimposition processing on the two or more pieces of data to generate processed data, an image-generation-unit that generates an acoustic wave image on the basis of the processed data, a setting-information-holding-unit that holds setting information on at least one of a transmitting-unit, a receiving-unit, the data-processing-unit, the-image-generation-unit, and a display-control-unit, and a setting-changing-unit that, in a case where a measurement condition is changed, changes setting of at least one of the transmitting-unit, the receiving-unit, the data-processing-unit, the image-generation-unit, and the display-control-unit on the basis of the held setting information, the setting being related to the acoustic wave image generated on the basis of the processed data.
Abstract:
In the ultrasound diagnostic apparatus, the method of determining the sound velocity, and the program recorded in a recording medium, a probe is made transmit an ultrasonic beam a plurality of times so as to form a predetermined transmission focus point, an analog element signal output by the probe is A/D converted into the first element data, the second element data corresponding to any one of a plurality of the first element data is generated, and the second element data is used to determine the sound velocity in an inspection object, whereby the sound velocity of the ultrasonic waves in the inspection object can be accurately determined without decreasing the frame rate.
Abstract:
An ultrasonic inspection apparatus includes: a probe; a transmission unit configured to cause the probe to transmit a ultrasonic beam; a reception unit configured to receive analog element signals output by the probe; an A/D conversion unit configured to perform A/D conversion on the analog element signal to obtain first element data; and a data processing unit configured to generate second element data from a plurality of the pieces of first element data, wherein the data processing unit changes conditions of acquisition of two or more of the pieces of first element data for generating the second element data depending on a depth of a position in which the second element data is obtained.