Abstract:
An information processing device that reconstructs an original image including an interference fringe image of at least one object to be observed is provided. The information processing device includes at least one processor that is configured to: acquire local area information representing a local area including the interference fringe image in the original image; generate a reconstructed image while changing a reconstruction position in the local area; calculate sharpness of the reconstructed image each time the reconstructed image is generated and detect an in-focus position where the sharpness is maximized; and output the reconstructed image at the in-focus position as an optimal reconstructed image.
Abstract:
Provided are a processor device, an endoscope system, and a method of operating a processor device capable of narrowing down a plurality of index values to the index value required to diagnose a lesion. An image obtained by imaging an observation target including a structure is acquired. An index value calculation unit 70 performs an index value calculation process of calculating a plurality of index values obtained by indexing a property of the structure on the basis of the image. An index value arithmetic processing unit 74 controls the index value calculation unit 70 according to a processing order in which a first index value is calculated and then a second index value different from the first index value is calculated among the plurality of index values.
Abstract:
There are provided a vascular information acquisition device, an endoscope system, and a vascular information acquisition method that can accurately acquire vascular information on a blood vessel of a target layer that is an object to be measured of a subject. A first blood vessel extraction unit (82) analyzes the image of a target layer to be measured and extracts a blood vessel (first blood vessel) from the image of a target layer. A blood vessel specification unit (84) specifies a blood vessel (second blood vessel) extending to a non-target layer from the target layer. In a case in which the second blood vessel is specified, a second blood vessel extraction unit (83) analyzes the image of the non-target layer in which the second blood vessel is present and extracts the specified second blood vessel from the image of the non-target layer.
Abstract:
An endoscope system has an oxygen saturation calculation unit that calculates the oxygen saturation of an observation target using an LUT. The endoscope system includes: an image acquisition unit that acquires a correction image obtained by imaging the observation target before calculating the oxygen saturation; an oxygen saturation correction amount calculation unit that calculates an oxygen saturation correction amount with respect to the oxygen saturation using the correction image; an oxygen saturation correction unit that corrects the oxygen saturation calculated by the oxygen saturation calculation unit according to the oxygen saturation correction amount; and a storage unit that stores the correction image and an oxygen saturation image, which shows the oxygen saturation after correction, so as to be associated with each other.
Abstract:
Using ultrasound frame data generated from the ultrasound echo reflected from the living tissue, the movement amount of the living tissue and its representative value are calculated. In a case where the representative value of the tissue movement amount is equal to or greater than a threshold value, a hue conversion LUT_large having a large degree of hue change is used, and an elastic image in which distortion is expressed by hue corresponding to the magnitude is generated. On the other hand, in a case where the representative value of the movement amount of the living tissue is less than the predetermined threshold value, a hue conversion LUT_small having a small degree of hue change is used to generate an elastic image.
Abstract:
Provided are a puncture range determination apparatus and a puncture range determination method in which the hardness of tissue is considered as well as blood vessels. A blood vessel (32) is detected through performing Doppler processing. In addition, a soft region (33) of a subject is detected through performing elastication processing. A range of the soft region (33) excluding the blood vessel (32) is detected as a puncture recommendation range. Guide lines (34) and (35) defining the puncture recommendation range are displayed. A doctor performs puncturing with a needle inside the guide lines (34) and (35) and punctures a puncture target region (31) with the needle.
Abstract:
In a photoacoustic image generation apparatus for obtaining a photoacoustic signal by emitting light toward a subject from a light source and detecting photoacoustic waves emitted from the subject having received the light and imaging the subject based on the photoacoustic signal, there are provided: means for removing a signal showing a component appearing discontinuously in the subject from photoacoustic signals relevant to a plurality of cross sections of the subject that have been generated by changing an angle between an emission direction of the light and a surface of the subject; and means for constructing a three-dimensional image of the subject from photoacoustic signals showing the plurality of cross sections after the removal processing.
Abstract:
An object of the present invention is to provide an ultrasound diagnostic apparatus, a signal processing method, and a recording medium capable of appropriately superimposing data and obtaining high quality images when correcting data by superimposing a plurality of data. A transmission frequency of an ultrasonic beam is set according to a processing condition in a data processor, and second element data is generated using a plurality of first element data obtained by transmitting the ultrasonic beam at the transmission frequency.
Abstract:
In the ultrasound diagnosis, a probe performs transmission of an ultrasonic beam a plurality of times so as to form predetermined transmission focus points, the analog reception data output by the probe is A/D converted to turn into a first element data, a plurality of first element data is used to generate a second element data corresponding to any one of the plurality of first element data, and a sound velocity is determined using the first element data in a case where the position for determining the sound velocity is in a vicinity of the transmission focus point and using the second element data in a case where the position is not in a vicinity of the transmission focus point. In this manner, the sound velocity of the ultrasound waves in an inspection object can be accurately determined without decreasing the frame rate.
Abstract:
In the ultrasound diagnostic apparatus, the ultrasonic wave transmitter/receiver transmits and receives an ultrasonic beam to a subject to generate reception data using ultrasonic wave transmission/reception elements arranged in one direction; the delay correction unit corrects a delay time of the reception data to align a phase of the reception data; the reception aperture range determination unit determines a reception aperture range of reception data, which is used when producing an ultrasound image from reception data after correction of the delay time, based on a signal value of the reception data after correction of the delay time in an arrangement direction of the ultrasonic wave transmission/reception elements; and the image producer produces an ultrasound image by performing phase matching addition of the reception data after correction of the delay time corresponding the reception aperture range and performing data processing.