Abstract:
An airfoil for a gas turbine engine includes a first side wall; a second side wall joined to the first side wall at a leading edge and a trailing edge; and an internal cooling system arranged within the first and second side walls configured to direct cooling air through and out of the airfoil. The internal cooling system has a first cooling circuit that includes an acceleration channel generally extending in a radial outward direction. A first section of the acceleration channel decreases in cross-sectional area along the radial outward direction such that the cooling air is accelerated through the first section of the acceleration channel. The first cooling circuit further includes a trailing edge chamber fluidly coupled to receive at least a portion of the cooling air from the acceleration channel and extending generally in a chordwise aft direction from the acceleration channel to the trailing edge.
Abstract:
Turbine wheels, turbine engines, and methods of forming the turbine wheels are provided herein. In an embodiment, a turbine wheel includes a rotor disk and a plurality of turbine blades. Each turbine blade is operatively connected to the rotor disk through a blade mount, which is bonded to the rotor disk. The blade mount and the rotor disk have a fore surface on a higher pressure side thereof and an aft surface on a lower pressure side thereof. The blade mount includes a blade attachment surface that extends between and connects the fore surface and the aft surface. The turbine blade extends from the blade attachment surface. A gap is defined between adjacent blade mounts. The gap separates the blade mounts and extends into the rotor disk. The gap includes a pocket that has a fore opening in the fore surface. A pocket seal is disposed in the pocket.
Abstract:
Turbine wheels, turbine engines, and methods of fabricating the turbine wheels are provided. An exemplary method includes fabricating a turbine wheel that includes a rotor disk and a plurality of turbine blades operatively connected to the rotor disk through a blade mount. The method includes locating a cooling passage within a blade mount preliminary configuration and a cooling inlet on a surface of the blade mount preliminary configuration. A rotor disk bonding surface geometry and a blade mount bonding surface geometry are designed based upon a stress analysis of the turbine wheel and locations of the cooling passage and cooling inlet. A rotor disk production configuration and a blade mount production configuration are generated based upon the preliminary configurations. A blade mount and a rotor disk are formed based upon the production configurations. A blade ring including a plurality of blade mounts is formed and bonded to the rotor disk.
Abstract:
A turbine rotor blade is provided with for a turbine section of an engine that includes a shroud surrounding the rotor blade. The rotor blade includes a platform and an airfoil extending from the platform into a mainstream gas path. The airfoil includes a pressure side wall, a suction side wall joined to the pressure side wall at a leading edge and a trailing edge, a tip cap extending between the suction side wall and the pressure side wall, a first squealer tip extension extending from the pressure side wall at a first angle relative to the pressure side wall, the first squealer tip extension defining a first cooling hole that converges between an inlet and an outlet; an internal cooling circuit configured to deliver cooling air to a gap between the pressure side squealer tip extension and the shroud via the first cooling hole.
Abstract:
A cooling arrangement is provided for a gas turbine engine with a turbine section. The cooling arrangement includes a first conduit to receive cooling air that includes particles; a separator system coupled to the first conduit to receive the cooling air and configured to remove at least a portion of the particles to result in relatively clean cooling air and scavenge air including the portion of the particles; and a second conduit coupled to the separator system and configured to direct the relatively clean cooling air to the turbine section.