Abstract:
A method and system for use onboard an ownship, the method includes generating on a cockpit display an alignment symbol, track bug, and heading bug to aid to align a track angle and heading of the ownship with a runway course by a pilot; and enabling a pilot to view the alignment symbol, the track bug and the heading bug and to maneuver the ownship to maintain first, an alignment of the heading to the runway course and second, to attempt to align a track angle of the ownship with the runway course by adjustments made to maneuver the ownship in a course of landing by a view of a relative position of each of the alignment symbol, the track bug, and the heading bug to each other to serve as an indicator to the pilot of adjustments needed in the course of landing.
Abstract:
A vehicle system and method are provided. The system includes a processor configured to compare received data representative of a current attitude with predetermined bank, nose up, and nose down values to determine that an occurrence of unusual attitude is currently underway. Upon determining that an occurrence of unusual attitude conditions is currently underway, the system and method generate display signals that command and control a display system to render roll angle alert symbology. The roll angle alert symbology includes a tracing arrowhead that more clearly shows the direction to recover from unusual attitude conditions. Based in part on the tracing nature of the arrowhead, provided technological improvements are observable on display systems that are monochrome, as well as those with color. In various embodiments, color attributes and confining the dynamic tracing performed by the arrowhead more clearly inform a pilot of the roll recovery direction to recover from unusual attitude conditions.
Abstract:
A vehicle system and method are provided. The system includes a processor configured to compare received data representative of a current attitude with predetermined bank, nose up, and nose down values to determine that an occurrence of unusual attitude is currently underway. Upon determining that an occurrence of unusual attitude conditions is currently underway, the system and method generate display signals that command and control a display system to render roll angle alert symbology. The roll angle alert symbology includes a tracing arrowhead that more clearly shows the direction to recover from unusual attitude conditions. Based in part on the tracing nature of the arrowhead, provided technological improvements are observable on display systems that are monochrome, as well as those with color. In various embodiments, color attributes and confining the dynamic tracing performed by the arrowhead more clearly inform a pilot of the roll recovery direction to recover from unusual attitude conditions.
Abstract:
A method of predicting a parameter for an aircraft includes detecting an actual approach profile of the aircraft. The actual approach profile includes an actual approach angle. The method also includes comparing, by a processor, the actual approach profile to a predetermined approach profile to determine a difference between the actual and predetermined approach profiles. The predetermined approach profile includes a predetermined approach angle. The method further includes determining, by the processor, an effective approach angle by combining the actual approach angle and the predetermined approach angle according to a factor that varies based on the difference between the actual and predetermined approach profiles. Moreover, the method includes determining, by the processor, the predicted parameter based on the effective approach angle.
Abstract:
Cockpit display systems and methods are provided for generating cockpit displays including symbology useful in assessing whether enhanced flight visibility requirements are satisfied during approach and landing. In one embodiment, the cockpit display system includes an Enhanced Flight Vision System (EFVS) sensor configured to monitor a region forward of the aircraft for runway reference features, a cockpit display device on which an EFVS image is generated utilizing EFVS sensor data, and a controller coupled to the EFVS sensor and to the display device. The controller determines an enhanced flight visibility requirement for a runway approached by the aircraft, and then visually indicates on the EFVS image whether enhanced flight visibility requirement is currently satisfied by, for example. generating an enhanced flight visibility indicator (EFVI) graphic on the EFVS image visually identifying a ground location beyond which the appearance of a runway reference feature satisfies the enhanced flight visibility requirement.
Abstract:
A system and method displays a synthetic vision system (SVS) image combined with a primary flight display (PFD) including a compass indicating the aircraft heading. An arc on or near the outer edge of the compass indicates the viewing frustum of the SVS view.
Abstract:
Flight deck display systems and methods for generating cockpit displays including dynamically-adjustable runway length symbology are provided. In one embodiment, the flight deck display system includes a display device to which a controller is operably coupled. A cockpit display, such as a primary fight display, is generated on the display device. The cockpit display is generated to include a runway graphic and a usable runway end marker. During operation of the display system, the controller receives runway usage restriction data identifying any currently restricted sections of a runway approached for usage by the aircraft. The controller further determines a dynamically-adjusted usable runway length as a function of the runway usage restriction data and then adjusts the position of the usable runway end marker, as generated on the cockpit display, along the length of the runway graphic in accordance with the dynamically-adjusted usable runway length.
Abstract:
Embodiments of a flight deck display system deployed onboard a rotary wing aircraft are provided, as are embodiments of a method carried-out by a flight deck display system. In one embodiment, the flight deck display system includes a controller operably coupled to a cockpit display device. The controller is configured to: (i) generate a Primary Flight Display (PFD) on the cockpit display device including a vertical speed indicator; (ii) establish a first vertical speed alert threshold; (iii) compare the first vertical speed alert threshold to a current vertical speed of the rotary wing aircraft; and (iv) if the current vertical speed of the rotary wing aircraft exceeds the first vertical speed alert threshold, produce a first vertical speed alert on the PFD by altering the appearance of the vertical speed indicator in a first predetermined manner.
Abstract:
Embodiments of a flight deck display system deployed onboard a rotary wing aircraft are provided, as are embodiments of a method carried-out by a flight deck display system. In one embodiment, the flight deck display system includes a controller operably coupled to a cockpit display device. The controller is configured to: (i) generate a Primary Flight Display (PFD) on the cockpit display device including a vertical speed indicator; (ii) establish a first vertical speed alert threshold; (iii) compare the first vertical speed alert threshold to a current vertical speed of the rotary wing aircraft; and (iv) if the current vertical speed of the rotary wing aircraft exceeds the first vertical speed alert threshold, produce a first vertical speed alert on the PFD by altering the appearance of the vertical speed indicator in a first predetermined manner.
Abstract:
Display systems and methods for generating a display providing runway illusion alleviation are disclosed herein. An exemplary method for generating a display includes the steps of determining a position of the aircraft in a vicinity of an approaching runway, retrieving terrain data regarding the vicinity of the approaching runway and retrieving runway data regarding the approaching runway, determining the existence of a runway illusion effect by analyzing the terrain data and the runway data. The method further includes the steps of rendering graphical terrain imagery and rendering graphical runway imagery on the flight display in accordance with the terrain data and the runway data and rendering a graphical runway illusion alleviation object on the flight display.