Abstract:
The present invention is directed to processes for the production of 1233zd from 240fa and HF, with or without a catalyst, at a commercial scale. The 240fa and HF are fed to a reactor operating at high pressure. The resulting product stream comprising 1233zd, HCl, HF, and other byproducts is treated to one or more purification techniques including phase separation and one or more distillations to provide purified 1233zd, which meets commercial product specifications, i.e., having a GC purity of 99.5% or greater.
Abstract:
Disclosed are processes for a high temperature isomerization reaction converting (E)-1-chloro-3,3,3-trifluoropropene to (Z)-1-chloro-3,3,3-trifluoropropene. In certain aspects of the invention, such a process includes contacting a feed stream with a heated surface, where the feed stream includes (E)-1-chloro-3,3,3-trifluoropropene or mixture of (E)-1-chloro-3,3,3-trifluoropropene with (Z)-1-chloro-3,3,3-trifluoropropene. The resulting product stream includes (Z)-1-chloro-3,3,3-trifluoropropene and (E)-1-chloro-3,3,3-trifluoropropene, where the ratio of (Z) isomer to (E) isomer in the product stream is higher than the ratio feed stream. The (E) and (Z) isomers in the product stream may be separated from one another.
Abstract:
The present invention relates to methods, process, and integrated systems for economically producing (E)-1-chloro-3,3,3-trifluoropropene via vapor phase and/or liquid processes.
Abstract:
The present invention is directed to processes for the production of 1233zd from 240fa and HF, with or without a catalyst, at a commercial scale. The 240fa and HF are fed to a reactor operating at high pressure. The resulting product stream comprising 1233zd, HCl, HF, and other byproducts is treated to one or more purification techniques including phase separation and one or more distillations to provide purified 1233zd, which meets commercial product specifications, i.e., having a GC purity of 99.5% or greater.
Abstract:
The instant invention relates to a process and method for manufacturing 2,3,3,3-tetrafluoropropene by dehydrohalogenating a reactant stream of 2-chloro-1,1,1,2-tetrafluoropropane that is substantially free from impurities, particularly halogenated propanes, propenes, and propynes.
Abstract:
A process for the manufacture of 1-chloro-3,3,3-trifluoropropene (HCFC-1233zd) at commercial scale from the reaction of HCC-240 and HF is disclosed. In one embodiment, HCC-240fa and HF are fed to a reactor operating at high pressure. Several different reactor designs useful in this process include; a stirred-tank reactor (batch and/or continuous flow); a plug flow reactor; a static mixer used as a reactor; at least one of the above reactors operating at high pressure; optionally combined with a distillation column running at a lower pressure; and combinations of the above; and/or with a distillation column. The resulting product stream consisting of 1233zd, HCl, HF, and other byproducts is partially condensed to recover HF by phase separation. The recovered HF phase is recycled to the reactor. The HCl is scrubbed from the vapor stream and recovered as an aqueous solution. The remaining organic components including the desired HCFC-1233zd are scrubbed, dried and distilled to meet commercial product specifications.
Abstract:
The present invention provides a method for separating halocarbons. In particular, the invention provides a method for separating halogenated olefin impurities from 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) using a solid adsorbent, particularly activated carbon. More particularly the invention pertains to a method for separating 2-chloro-3,3,3-trifluoro-propene (HCFO-1233xf) from HCFC-244bb, which are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
Abstract:
This invention relates to a process for the suppression of 3,3,3-trifluoropropyne during the manufacture of fluorocarbons, fluoroolefins, hydrochlorofluoroolefins. More particularly, this invention is directed to a process to suppress the formation of 3,3,3-trifluoropropyne during processes for the manufacture of HCFO-1233zd(E), HCFO-1233zd(Z), HFO-1234ze(E), and/or HFO-1234ze(Z).
Abstract:
The invention relates to a separation process whereby 2-chloro-3,3,3-trifluoropropene (1233xf) is separated from a mixture containing other fluorinated organics and high boiling materials such as dimers using azeotropes of HF formed by adding appropriate amounts to the mixture which facilitate separation by, e.g. distillation.
Abstract:
Disclosed is process for the production of (E) 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd(E)) by conducting a continuous reaction without the use of a catalyst. Also disclosed is an integrated system including one or more reactors for producing hydrofluoro olefins, particularly 1233zd(E). The manufacturing process includes six major unit operations: (1) a fluorination reaction of HCC-240fa (in continuous or semi-batch mode) using HF with simultaneous removal of by-product HCl and the product 1233zd(E); (2) recycle of unreacted HCC-240fa and HF together with under-fluorinated by-products back to (1); (3) separation and purification of by-product HCl; (4) separation of excess HF back to (1); (5) purification of final product, 1233zd(E); and (6) isomerization of by-product 1233zd(Z) to 1233zd(E) to maximize the process yield.