摘要:
A portable x-ray detector is disclosed that includes an x-ray detecting member and a user removable electromagnetic interference (EMI) shielding member. The user removable EMI shielding member is positioned to at least partially magnetically shield the x-ray detecting member of the portable x-ray detector by redirecting an impinging magnetic field around the x-ray detecting member. The user removable EMI shielding member includes a first magnetic shielding layer, a second magnetic shielding layer, and an intervening material, other than the x-ray detecting member, between the first magnetic shielding layer and the second magnetic shielding layer.
摘要:
An imaging system is provided having an EMI shield configured to shield one or more imaging components. The EMI shield includes a first material having a first plurality of conductive elements integrally formed within a first nonconductive material and also includes a generally nonconductive exterior. A method is provided for shielding EMI in an imaging system. The method includes providing an EMI shielding enclosure that includes a first material having a first plurality of conductive elements disposed in a first non-conductive material, and a second material having a second plurality of conductive elements disposed in a second non-conductive material, wherein the first plurality of conductive elements engages the second plurality of conductive elements to form a conduction path. Another method for shielding EMI in an imaging system is provided, that includes providing an EMI shielding enclosure having a first material that has a non-conductive surface and a second EMI shielding material disposed on the non-conductive surface of the first material.
摘要:
The present technique provides a multi-tile detector and a process for assembling the multi-tile detector using a flexible structure and intermediate electrical connections. The present technique minimizes edge gaps between adjacent detector tiles by coupling the detector tiles to the flexible structure and then flexing the flexible structure to close the edge gaps. Intermediate electrical connections, such as interlayer solder bumps, also may be used to minimize visible artifacts associated with tiling of the detector tiles. The present technique also may use a plurality of soldering materials having different melting temperatures to facilitate multiple soldering steps that are nondestructive of previous soldering steps.
摘要:
Systems and methods are provided for managing power consumption of a medical imaging detector by the use of triggering signals, environmental condition data, and/or determination of a variable time interval triggering event that is unique for each power consumption state. Systems and methods are provided for managing power and temperature of a device, after receiving a request for a function to be performed by the device determining an “on” trigger component, an “off” trigger component, associated circuits for performing the received function, providing power to the associated circuits upon the occurrence of the “on” trigger component, and removing power to the associated circuits upon the occurrence of the “off” trigger component. Further, an instruction is described for determining and displaying a variable time interval that is indicative of a time to change from one state to a desired state.