Abstract:
A magnetic measuring apparatus includes an inclination gantry including a mount surface and an inclined surface that is inclined with respect to the mount surface, a cryostat disposed on the inclined surface, a cryocooling system connected to the cryostat, a sensor tube connected to the cryostat and including a curved surface that does not curve in a predetermined direction and curves in a direction orthogonal to the predetermined direction such that a center of the curved surface protrudes with respect to side edges of the curved surface, and a magnetic sensor that measures biomagnetism and is housed in the sensor tube such that a sensor surface of the magnetic sensor faces the curved surface. The sensor surface is inclined with respect to the mount surface in a direction that is the same as a direction in which the inclined surface is inclined.
Abstract:
A nerve stimulation apparatus is provided. The nerve stimulation apparatus detects nerve activities from a body surface and applies stimulation. The nerve stimulation apparatus includes a stimulation apparatus with multiple electrodes which are arranged on skin and a current supply unit which supplies a current to the electrodes, which stimulation apparatus provides the current to a living body percutaneously to stimulate a target nerve; a measurement apparatus which measures activities of muscles governed by the nerve according to the stimulation from the stimulation apparatus; and an information processing apparatus which determines, based on a measurement result of the nerve activities obtained from the measurement apparatus, which electrode is capable of providing the target nerve activities equal to or greater than a desired value.
Abstract:
A data storage unit of a data editing apparatus stores both a base indicating a data attribute and a data value in association with each other as data to be edited. A code acquisition unit acquires a user code, which is a code described in a first program language for describing data editing details by intensive notation and which describes editing details for the data to be edited that are based on the base. A code generation unit generates, in accordance with a predetermined correspondence relationship between a second program language for describing data editing details by extensive notation and the first program language, an execution code described in the second program language based on the user code. An editing processing unit edits the data to be edited in accordance with the execution code.
Abstract:
According to an embodiment, a semiconductor device includes a power supply switch and a first regulator. One end of the power supply switch is connected to an input terminal. The other end of the power supply switch is connected to an output terminal. The first regulator includes a power supply terminal connected to the one end of the power supply switch, and a voltage output terminal connected to the other end of the power supply switch. The first regulator is configured to control a voltage of the voltage output terminal to approach a target voltage based on a voltage of the power supply terminal. The target voltage is switched to a first voltage or a second voltage. The first voltage is equal to or more than the voltage of the power supply terminal. The second voltage is lower than the voltage of the power supply terminal.
Abstract:
The present invention provides a method for forming a pattern, containing: stacking a master having at least a two-dimensional pattern or a three-dimensional pattern formed thereon and a pattern-transferring material containing at least a recording layer which changes a state thereof as light is transmitted thereto; and transmitting light to the recording layer so as to transfer the pattern of the master onto the recording layer.
Abstract:
The phase-change optical recording medium having a substrate, and at least a first protective layer, a recording layer composed of a phase-change material, a second protective layer and a reflective layer disposed on the substrate in this sequence has a maximum recording linear velocity VH of 20 m/s to 60 m/s, a range of linear velocity recordable even when the recording linear velocity is continuously changed of 0.3VH to 1.0VH, and no occurrence of crystals causing a reproduction error in recorded marks.
Abstract:
An imprint method of, in a state in which an indented surface of a mold comes in contact with a to-be-transferred surface of a to-be-transferred object, irradiating with electromagnetic waves to soften the to-be-transferred surface, and transferring an indented shape of the indented surface to the to-be-transferred surface, includes a heating layer forming step of forming, on the indented surface, a heating layer which absorbs the electromagnetic waves and generates heat; and a softening step of irradiating the heating layer with the electromagnetic waves, through the mold or the to-be-transferred object, at least one of the mold and the to-be-transferred object being made of a material which transmits the electromagnetic waves, causing the heating layer to generate heat, and softening the to-be-transferred surface.
Abstract:
An optical recording method to record information with a mark length recording method, where an amorphous mark and a crystal space are recorded only in the groove of a substrate having a guide groove, with the temporal length of the mark and the space of nT (T denotes a reference clock period; n denotes a natural number). The space is formed at least by an erase pulse of power Pe; all the marks of 4T or longer are formed by a multi pulse alternatively irradiating a heating pulse of power Pw and a cooling pulse of power Pb while Pw>Pb; and the Pe and the Pw satisfy the following relations: 0.15≦Pe/Pw≦0.4, and 0.4≦τw/(τw+τb)≦0.8, where τw denotes the sum of the length of the heating pulses, and τb denotes the sum of the length of the cooling pulses.
Abstract:
An optical recording medium including a transparent substrate; and at least one multi-layer information layer located on the transparent substrate and including a phase change recording layer configured to record information by changing its phase between a crystallization state and an amorphous state, a protective layer, and a reflection layer, wherein the average of partial response signal-to-noise ratio (PRSNR) in all data regions of the recording medium is not less than 15.0 after one direct overwriting (DOW1) cycle and the standard deviation of inter-track distribution of PRSNR is not greater than 0.3.
Abstract:
To provide a method of recording information to an optical recording medium comprising recording a mark of time length nT (n: natural number of 3 or more, T: clock cycle) in an optical recording medium capable of supporting different recording speeds and having constant information line density, and irradiating the optical recording medium, the optical recording medium irradiated with light of alternating m1 heating pulses of power Pw and m1 cooling pulses of power Pc (where m1 is a natural number smaller than n) provided v