摘要:
Disclosed is the structure of a persistent current switch and a control method for the same. In the switch structure, a portion of a superconducting wire to be used as a switch is formed with slits such that the flow of current is controlled by the switch, to facilitate a transition between the superconducting state and the normal state of the superconducting wire. The structure of the persistent current switch includes a first slit longitudinally extending from a first point on one end of a superconducting wire to a second point and from a third point to a fourth point, the second, third, and fourth points being arranged sequentially in a longitudinal line, and second and third slits provided at opposite sides of a region between the second point and the third point where no first slit exists.
摘要:
A noncontact method for measuring currents flowing through superconductive wires connected in parallel is provided. The method includes arranging hall sensors for measuring voltage levels based on magnetic fields generated around the superconductive wires, setting a matrix relation between the measured voltage values, values of currents flowing through the superconductive wires, and a variable matrix having variables defining relations between the voltage values and the current values, applying predetermined current levels to the superconductive wires a number of times and measuring voltage values through the hall sensors, substituting the predetermined current values and the measured voltage values into the matrix relation to calculate the variables of the variable matrix, and substituting the calculated variable matrix and unknown voltage values, measured by the hall sensors when unknown currents flow through the superconductive wires, into the matrix relation to calculate values of the unknown currents flowing through the superconductive wires.
摘要:
An image of an object is reconstructed in a three-dimensional coordinate system in an x-ray computed tomography system. A partial scan of the object is performed by rotating an x-ray beam having a cone beam geometry around a portion of the object or rotating the object in the cone-beam. The x-ray beam forms on a scanning trajectory through a plurality of projection lines from a plurality of successive focal point locations. The scanning trajectory may be substantially circular, helical, spiral, or spiral-like. The x-ray beam, attenuated by the object during the spiral scan, is detected to produce detector values. The detector values are integrated along straight lines on the detector plane to obtain intermediate data. Three-dimensional Radon values representing approximate plane integrals of the object are calculated from the intermediate data using a Grangeat relationship or a modified or extended version or the Grangeat relationship. The calculated and estimated Radon values are then reconstructed into an image volume according to the Radon inversion formula.