摘要:
A fluid dynamic-pressure bearing includes a thrust dynamic-pressure bearing between a bearing member and a rotor hub and a tapered sealing portion continuous with the thrust dynamic-pressure bearing and defining a radial gap whose width gradually increases in the axial direction. A neck is formed in a passageway between the thrust dynamic-pressure bearing and a lubricating fluid/air interface maintained in the tapered sealing portion for increasing flow resistance of the lubricating fluid.
摘要:
A hydrodynamic bearing device comprises a shaft bush having a substantially conical inclined dynamic pressure surface around the outer circumference thereof which is relatively rotatably inserted in a bearing sleeve having a substantially conical inclined dynamic pressure surface around the inner circumference thereof. A substantially conical inclined bearing space is created in the gap between the inclined dynamic pressure surfaces of the bearing sleeve and shaft bush. Lubricant fluid is filled inside the inclined bearing space. A proper dynamic pressure generating means is formed on at least one of the inclined dynamic pressure surfaces of the shaft bush and bearing sleeve. The lubricant fluid is pressurized by the dynamic pressure generating means to generate dynamic pressure, by which the shaft bush and the bearing sleeve are relatively elevated in the radial and thrust directions so that their rotations are supported in a non-contact manner. A fluid sealing portion is provided in the inclined bearing space to prevent the lubricant fluid from leaking outside of the inclined bearing space. A fluid pressurizing means is provided between the inclined bearing space and the fluid sealing portion to pressurize the lubricant fluid in the direction to push it toward the inside of the inclined bearing space.
摘要:
Spindle-motor stator includes at least a first core sheet and at least one or more second core sheets located next to an end core sheet. A bent portion bent upward and a protrusion extending upward from the bent portion are formed at the forward end of the plurality of the first core sheet. Each of the plurality of teeth is wound with a conductive wire.
摘要:
A conical hydrodynamic bearing device comprises a shaft bush having a conical inclined dynamic pressure surface around an outer circumference thereof being relatively-rotatably inserted in a bearing sleeve having a conical inclined dynamic pressure surface around an inner circumference thereof, so that a conical inclined bearing space is created in a gap between the inclined dynamic pressure surfaces of the bearing sleeve and shaft bush. A lubricant fluid is filled inside the inclined bearing space. A proper dynamic pressure generating means is formed on at least one of the inclined dynamic pressure surfaces of the shaft bush and bearing sleeve. The lubricant fluid is pressurized by the dynamic pressure generating means to generate dynamic pressure, by which the shaft bush and the bearing sleeve are relatively elevated in the radial and thrust directions so that their rotations are supported in a non-contact manner. An open angle θ1 created by a pair of generatrixes between which a plane including the center axis of the shaft bush intersects with the inclined dynamic pressure surface of the shaft bush which is set to be larger than an open angle θ2 created by a pair of generatrixes between which a plane including said center axis of the bearing sleeve intersects with the inclined dynamic pressure surface of the bearing sleeve (θ1>θ2).
摘要:
A fluid dynamic pressure bearing apparatus includes a radial dynamic pressure bearing formed in a gap portion between a bearing member and a shaft member. The apparatus also includes a thrust dynamic pressure bearing having a first thrust bearing portion formed between a top surface of the thrust plate and a first facing member opposing thereto in the axial direction and a second thrust bearing portion formed between a bottom surface of the thrust plate and a second facing member opposing thereto in an axial direction. Dynamic pressure generating grooves are formed on the radial dynamic pressure bearing and the thrust dynamic pressure bearing. The shaft member and the bearing member are rotated together as a rotation member, such that the rotation member is supported in a position such that a gap space L1 of the first thrust bearing portion is larger than a gap space L2 of the second thrust bearing portion and the depth of the dynamic pressure generating grooves where the gap space is smaller is formed shallower than that where the gap space is larger.
摘要:
A motor includes a core having a common connection section formed in a ring shape, a plurality of salient pole sections that protrude and extend radially from the common connection section, each of the salient pole sections defining a common connection section side adjacent to the common connection section and a tip side opposite the common connection section side, and a coil winding wound on each of the salient pole sections. The coil winding is wound on each of the salient pole sections in a plurality of layers, and each of the salient pole sections includes a retaining section adjacent to the tip side thereof, which hooks and supports a lead wire that extends from a winding end part of the coil winding. The coil winding in a top most layer among the plurality of layers is wound from the common connection section side towards the tip side of the corresponding salient pole section, and the lead wire extending from the winding end part of the coil winding in the top most layer is hooked and turned back at the retaining section on the corresponding salient pole section, and held generally straight towards the common connection section side.
摘要:
A dynamic pressure bearing device includes a dynamic pressure bearing member, a rotary member that is rotatable with respect to the dynamic pressure bearing member, a thrust dynamic pressure bearing section provided in a thrust opposing region that is between an end surface in an axial direction of the dynamic pressure bearing member and an end surface in the axial direction of the rotary member, and a pumping device provided in the thrust opposing region. The thrust dynamic pressure bearing section rotatably supports the rotary member in the axial direction of the rotary member, and the pumping device provided in the thrust opposing region pressurizes a lubricating fluid inside the thrust opposing region inwardly in a radial direction, wherein the pumping device generates an inward pressurizing force larger than a rotational centrifugal force applied to the lubricating fluid within the thrust opposing region during rotation.
摘要:
A dynamic pressure bearing device includes a rotary shaft, a dynamic pressure bearing member for supporting the rotary shaft, two radial dynamic pressure bearing parts and a thrust dynamic pressure bearing part formed between the dynamic pressure bearing member and the rotary shaft, and a lubricating fluid continuously filled in the two radial bearing parts and the thrust bearing part. A bypass passage for pressure release is provided for communicating across the two radial dynamic pressure bearing parts to flow the lubricating fluid corresponding to the amount of the unbalance caused by the unbalance of the pumping effect forces from a high-pressure side to a low-pressure side through the bypass passage to reduce the unbalance.
摘要:
A dynamic pressure bearing device including a dynamic pressure bearing member, a thrust dynamic pressure bearing member, and a fluid sealing section for preventing lubrication fluid in the thrust dynamic pressure bearing member from leaking outside, provided adjacent to an outer side section in a radial direction of the thrust dynamic pressure bearing member and defined by an outer circumference wall surface of the dynamic pressure bearing member. The outer circumference wall surface has an inclined outer surface having diameters that decrease in the axial direction, and a ridge section located removed in the axial direction from the fluid sealing section, wherein the outer circumference wall surface is receded in the radial direction along the ridge section than the inclined outer surface of the dynamic pressure bearing member.
摘要:
A hydrodynamic bearing apparatus comprises a shaft and a bearing having facing hydrodynamic surfaces therebetween. Hydrodynamic pressure generating grooves are disposed on at least one of the facing hydrodynamic surfaces of the shaft and bearing. The apparatus relatively rotatably supports the shaft and bearing by the hydrodynamic pressure from a lubricant fluid filled between the facing hydrodynamic surfaces. One of the shaft and bearing, on which the hydrodynamic pressure generating grooves are formed, are made of a metallic material whose thermal expansion coefficient is smaller than that of a copper containing material. A working layer made of the copper containing material is formed on the hydrodynamic surface side of the metallic material. The surface of the working layer functions as the hydrodynamic surface. The hydrodynamic pressure generating grooves are formed on the working layer.