摘要:
A disk drive apparatus and read error recovery method in a disk drive apparatus removes thermal asperities on disk surfaces. A projection, such as a thermal asperity, on the recording surfaces of disks is detected when a signal transducer contacts the projection. The flying height of the signal transducer is lowered, e.g., by reducing the disk rotation speed from the normal rotation speed in read/write operations, while the signal transducer is positioned over the detected projection on the track. The signal transducer strikes the projection to break the projection. This avoids a subsequent error from being caused by the thermal asperity.
摘要:
A disk drive. The disk drive includes a head, an actuator, and a controller. The head accesses a disk. The actuator is configured to support the head and to move the head by action of a voice-coil motor in a substantially radial direction of the disk. The controller is also configured to perform servo control of the actuator by using servo data read out by the head. The controller includes at least one of a plurality of notch filters having a fixed center frequency inserted in a servo-control loop. The controller is configured to increase an attenuation rate by at least one of the plurality of notch filters having the fixed center frequency at a designated frequency, when a target position of the head is at a position selected from the group consisting of a position outside of a specified region and a position within the specified region.
摘要:
A servo control system configured to position a head in accordance with position error signals between servo data on a disk read by the head in a servo sampling cycle and a target position. The system includes a plurality of adaptive peak filters connected in parallel configured to filter the position error signals and configured to change filter coefficients adaptively, and an estimator configured to estimate head vibration caused by disturbances using the servo data read by the head. The system further includes a selector configured to select a portion of the plurality of adaptive peak filters at preset occasions, and a setter configured to update coefficient settings of the portion of the adaptive peak filters selected by the selector in accordance with an estimation by the estimator.
摘要:
A disk drive. The disk drive includes a head, a moving mechanism, a first peak filter, an adaptive peak filter, and a filter controller. The head is configured to read servo data on a disk at sampling frequency. The moving mechanism is configured to move the head in proximity with a recording surface of the disk. The first peak filter has a fixed peak frequency and a variable gain, and is configured to be inserted into a servo loop. The servo loop is configured to position the head with position error signals between servo data read by the head and a target position. The adaptive peak filter has a variable peak frequency and a variable gain, and is configured to be inserted into the servo loop. The filter controller is configured to control the gain of the adaptive peak filter according to the gain of the first peak filter.
摘要:
A servo control system configured to position a head in accordance with position error signals between servo data on a disk read by the head in a servo sampling cycle and a target position. The system includes a plurality of adaptive peak filters connected in parallel configured to filter the position error signals and configured to change filter coefficients adaptively, and an estimator configured to estimate head vibration caused by disturbances using the servo data read by the head. The system further includes a selector configured to select a portion of the plurality of adaptive peak filters at preset occasions, and a setter configured to update coefficient settings of the portion of the adaptive peak filters selected by the selector in accordance with an estimation by the estimator.
摘要:
A disk drive. The disk drive includes a head, an actuator, and a controller. The head accesses a disk. The actuator is configured to support the head and to move the head by action of a voice-coil motor in a substantially radial direction of the disk. The controller is also configured to perform servo control of the actuator by using servo data read out by the head. The controller includes at least one of a plurality of notch filters having a fixed center frequency inserted in a servo-control loop. The controller is configured to increase an attenuation rate by at least one of the plurality of notch filters having the fixed center frequency at a designated frequency, when a target position of the head is at a position selected from the group consisting of a position outside of a specified region and a position within the specified region.
摘要:
Embodiments of the present invention help to perform appropriate servo control in response to detected vibration in a disk drive device having a vibration sensor. In an embodiment of the present invention, an HDD switches a correction servo mode to perform vibration correction in head positioning and a normal servo mode not to perform the vibration correction. The HDD performs servo positioning in either one of the serve modes and determines servo positioning accuracy in the servo mode from the measured positional error signal. The HDD obtains data indicating the servo positioning accuracy in the other servo mode from a table. The HDD compares the accuracy in the two servo modes and selects the servo mode with higher accuracy. The table contains previous measurements on servo positioning accuracy in the servo modes.
摘要:
Embodiments of the present invention help to perform appropriate servo control in response to detected vibration in a disk drive device having a vibration sensor. In an embodiment of the present invention, an HDD switches a correction servo mode to perform vibration correction in head positioning and a normal servo mode not to perform the vibration correction. The HDD performs servo positioning in either one of the serve modes and determines servo positioning accuracy in the servo mode from the measured positional error signal. The HDD obtains data indicating the servo positioning accuracy in the other servo mode from a table. The HDD compares the accuracy in the two servo modes and selects the servo mode with higher accuracy. The table contains previous measurements on servo positioning accuracy in the servo modes.
摘要:
Embodiments of the present invention help to achieve a read error recovery, and suppress decreases in the capacity of the disk drive device and degradation in performance. In one embodiment, a hard disk drive (HDD) performs following control without use of repeatable run-out (RRO) compensation information on a magnetic disk in a normal reading process. When an error occurs in a normal reading process, the HDD moves a read element to a position different from a target position of the normal reading process. At the position where the read element has been moved, the read element reads out the RRO compensation information. In a recovery procedure for the reading process where the error has occurred, the HDD performs following control with compensation by the servo compensation information read out by the read element.
摘要:
Embodiments in accordance with the present invention provide a magnetic disk drive with sufficiently low noise. A digital/analog converter supplies to a voice coil motor (VCM) driver a control voltage comprising a first preset voltage value, a second preset voltage value, and a transition voltage value of a substantially cosine wave that interconnects the first preset voltage value and the second preset voltage value. A driving current is supplied from the VCM driver to a voice coil of an actuator assembly. Since a current not containing higher-harmonic components in a transition period flows as a VCM current that flows into the voice coil, vibromotive force can be easily suppressed by shifting a structural resonance point of the entire disk drive including the actuator assembly. In addition, since the back electromotive force occurring in an inductance element is cleared to zero during a half wavelength of period of the cosine wave, speed electromotive force can be measured by immediate shifting from a setting period to a measuring period.