Abstract:
A Network Interface Controller (NIC) includes a network interface, a peer interface and steering logic. The network interface is configured to receive incoming packets from a communication network. The peer interface is configured to communicate with a peer NIC not via the communication network. The steering logic is configured to classify the packets received over the network interface into first incoming packets that are destined to a local Central Processing Unit (CPU) served by the NIC, and second incoming packets that are destined to a remote CPU served by the peer NIC, to forward the first incoming packets to the local CPU, and to forward the second incoming packets to the peer NIC over the peer interface not via the communication network.
Abstract:
A method for processing data includes receiving in a peripheral device, which is connected by a bus to a host processor having multiple host resources, information regarding respective power states of the host resources. The data are selectively directed from the peripheral device to the host resources responsively to the respective power states.
Abstract:
A network interface controller includes a host interface, which is configured to be coupled to a host processor having a host memory. A network interface is configured to receive data packets from a network, each data packet including a header, which includes header fields, and a payload including data. Packet processing circuitry is configured to process one or more of the header fields and at least a part of the data and to select, responsively at least to the one or more of the header fields, a location in the host memory. The circuitry writes the data to the selected location and upon determining that the processed data satisfies a predefined criterion, asserts an interrupt on the host processor so as to cause the host processor to read the data from the selected location in the host memory.
Abstract:
A method for data transfer includes receiving in an operating system of a host computer an instruction initiated by a user application running on the host processor identifying a page of virtual memory of the host computer that is to be used in receiving data in a message that is to be transmitted over a network to the host computer but has not yet been received by the host computer. In response to the instruction, the page is loaded into the memory, and upon receiving the message, the data are written to the loaded page.
Abstract:
A Network Interface (NI) includes a host interface, which is configured to receive from a host processor of a node one or more cross-channel work requests that are derived from an operation to be executed by the node. The NI includes a plurality of work queues for carrying out transport channels to one or more peer nodes over a network. The NI further includes control circuitry, which is configured to accept the cross-channel work requests via the host interface, and to execute the cross-channel work requests using the work queues by controlling an advance of at least a given work queue according to an advancing condition, which depends on a completion status of one or more other work queues, so as to carry out the operation.
Abstract:
A Network Interface (NI) includes a host interface, which is configured to receive from a host processor of a node one or more work requests that are derived from an operation to be executed by the node. The NI maintains a plurality of work queues for carrying out transport channels to one or more peer nodes over a network. The NI further includes control circuitry, which is configured to accept the work requests via the host interface, and to execute the work requests using the work queues by controlling an advance of at least a given work queue according to an advancing condition, which depends on a completion status of one or more other work queues, so as to carry out the operation.
Abstract:
A method for processing data includes receiving in a peripheral device, which is connected by a bus to a host processor having multiple host resources, information regarding respective power states of the host resources. The data are selectively directed from the peripheral device to the host resources responsively to the respective power states.
Abstract:
A data storage system includes a storage server, including non-volatile memory (NVM) and a server network interface controller (NIC), which couples the storage server to a network. A host computer includes a host central processing unit (CPU), a host memory and a host NIC, which couples the host computer to the network. The host computer runs a driver program that is configured to receive, from processes running on the host computer, commands in accordance with a protocol defined for accessing local storage devices connected to a peripheral component interface bus of the host computer, and upon receiving a storage access command in accordance with the protocol, to initiate a remote direct memory access (RDMA) operation to be performed by the host and server NICs so as to execute on the storage server, via the network, a storage transaction specified by the command.
Abstract:
A method for network access of remote memory directly from a local instruction stream using conventional loads and stores. In cases where network IO access (a network phase) cannot overlap a compute phase, a direct network access from the instruction stream greatly decreases latency in CPU processing. The network is treated as yet another memory that can be directly read from, or written to, by the CPU. Network access can be done directly from the instruction stream using regular loads and stores. Example scenarios where synchronous network access can be beneficial are SHMEM (symmetric hierarchical memory access) usages (where the program directly reads/writes remote memory), and scenarios where part of system memory (for example DDR) can reside over a network and made accessible by demand to different CPUs.
Abstract:
A computer peripheral device includes a host interface, which is configured to communicate over a bus with a host processor and with a system memory of the host processor. Processing circuitry in the peripheral device is configured to receive and execute work items submitted to the peripheral device by client processes running on the host processor, and responsively to completing execution of the work items, to write completion reports to the system memory, including first completion reports of a first data size and second completion reports of a second data size, which is smaller than the first data size.