摘要:
A DC-DC converter for preventing through current from causing erroneous operation of an ideal diode. A first transistor for receiving input voltage is connected to an ideal diode, which includes a second transistor and a comparator for detecting current flowing through the second transistor and generating a detection signal. A control circuit generates a switching signal for turning the first transistor on and off so as to keep the output voltage constant. A pulse generation circuit generates a pulse signal for turning off the second transistor before the first transistor is turned on and keeping the second transistor turned off for a predetermined period from when the first transistor is turned on. An erroneous operation prevention circuit generates a control signal for keeping the second transistor turned off from when the second transistor is turned off to when the first transistor is turned on.
摘要:
To provide a control circuit for a synchronous rectifier-type DC-DC converter, a synchronous rectifier-type DC-DC converter and a control method thereof in which, in a light load state and a no-load state, an output voltage can be dropped to thus prevent an overshoot state from continuing. A synchronous rectifier-type DC-DC converter 10 and a control circuit 20A thereof comprising a first switching element FET1 that is made conductive when power is accumulated in an induction element L1, and a second switching element FET2 that is made conductive when power accumulated in induction element L1 is supplied to a load, also comprises a detecting unit COMP2 that detects that a value of an output voltage VOUT of the synchronous rectifier-type DC-DC converter 10A is a predetermined voltage value that is higher than a target voltage value, and control units COMP1 and OR1 that maintain the second switching element FET2 in a conductive state after discharge of the power accumulated in the induction element L1 is finished, based on the detection results of the detecting unit COMP2.
摘要:
A DC-DC converter reducing reverse current and maintaining high conversion efficiency under a light load. The DC-DC converter perform pulse width modulation (PWM) or pulse frequency modulation (PFM) and includes a drive control circuit generating a first drive signal and a second drive signal activating and inactivating a first transistor and a second transistor in a complementary manner. A reversed flow detection circuit detects current flowing to the second transistor and generates a detection signal controlling activation and inactivation of the second transistor. A detection signal invalidation circuit, coupled to the reversed flow detection circuit and the drive control circuit, receiving an operation switch signal and invalidating the detection signal in response to the operation switch signal during at least a certain period of the PWM.
摘要:
To provide a control circuit of a current mode DC-DC converter, a current mode DC-DC converter and a control method thereof having excellent high-speed responsiveness with respect to fluctuations in output voltage. The control circuit of the current mode DC-DC converter serves as a DC-DC converter 1 that controls a peak value of a coil current and comprises a window comparator that detects whether an output voltage VOUT is within a predetermined voltage range including a target voltage, and a peak current setting unit that sets a peak current setting value of a coil current to a lower limit value or an upper limit value in response to a high or low voltage level of the output voltage VOUT, in the case that the output voltage VOUT is not within the predetermined voltage range including the target voltage.
摘要:
According to an embodiment, a DC-DC converter comprises: an error amplifier that receives a soft start signal and amplifies a difference between an output voltage signal and a reference voltage signal; a PWM control circuit that controls ON and OFF states of a first switching transistor and a second switching transistor based on the output of the error amplifier; a frequency divider that divides a frequency signal and outputting a divided frequency signal; an accumulator that performs an adding operation based on the divided frequency signal and a control signal; and a DA converter that generates the soft start signal based on an output of the accumulator.
摘要:
A DC-DC converter reducing reverse current and maintaining high conversion efficiency under a light load. The DC-DC converter perform pulse width modulation (PWM) or pulse frequency modulation (PFM) and includes a drive control circuit generating a first drive signal and a second drive signal activating and inactivating a first transistor and a second transistor in a complementary manner. A reversed flow detection circuit detects current flowing to the second transistor and generates a detection signal controlling activation and inactivation of the second transistor. A detection signal invalidation circuit, coupled to the reversed flow detection circuit and the drive control circuit, receiving an operation switch signal and invalidating the detection signal in response to the operation switch signal during at least a certain period of the PWM.
摘要:
A sigma-delta modulator for generating a modulation signal that modulates a frequency division ratio of a comparator/frequency divider of a PLL circuit. Series-connected integrators accumulate an input signal and output overflow signals when their accumulated values exceed a predetermined value. Differentiators transfer the overflow signals of the integrators. An adder multiplies output signals output from the differentiators by a predetermined coefficient and adds the products. A control circuit for transferring the accumulated value in synchronization with a clock signal of each integrator is connected between the integrator of a final stage and the integrator of the preceding stage. The control circuit reduces the modulation width of the modulation signal without reducing the order number of the modulator.
摘要:
According to one aspect of the invention, a DC-DC converter including a soft-start function of a soft start in response to a soft-start signal, comprises: a detection circuit that detects whether the soft-start signal is active at an end of a soft-start operation; and an output voltage control circuit that controls an output voltage based on detection result of the detection circuit.
摘要:
A DC-DC converter having conversion efficiency that is not lowered by input voltage change. A mode control circuit of the DC-DC converter monitors the input voltage, output voltage generated from the input voltage, and output current. The output current changes in accordance with the output voltage. Based on the input voltage, output voltage, and consumption current of a controller of the DC-DC converter, the mode control circuit generates a signal that is in accordance with load current in which efficiency of a switching regulator and efficiency of a linear regulator are substantially the same. The mode control circuit further compares a signal corresponding to the output current and the signal that is in accordance with the load current to generate a mode control signal. The controller operates the DC-DC converter as the switching regulator or the linear regulator in accordance with the mode control signal.
摘要:
A DC-DC converter prevents through current from flowing in an output transistor. A first transistor receives an input voltage. A second transistor is connected to the first transistor. A comparator is connected to the second transistor. The comparator detects current flowing through a choke coil based on the potential difference between two terminals of the second transistor to generate a switching control signal for turning the second transistor on and off. The second transistor and the comparator form an ideal diode. A control circuit of the DC-DC converter generates an activation signal for turning the first transistor on and off based on a pulse signal to keep an output voltage constant. A through current prevention pulse generation circuit generates a pulse signal for turning off the second transistor from before the first transistor is turned on to after the first transistor is turned on.