DOMAIN ADAPTATION FOR STRUCTURED OUTPUT VIA DISENTANGLED REPRESENTATIONS

    公开(公告)号:US20190354807A1

    公开(公告)日:2019-11-21

    申请号:US16400376

    申请日:2019-05-01

    Abstract: Systems and methods for domain adaptation for structured output via disentangled representations are provided. The system receives a ground truth of a source domain. The ground truth is used in a task loss function for a first convolutional neural network that predicts at least one output based on inputs from the source domain and a target domain. The system clusters the ground truth of the source domain into a predetermined number of clusters, and predicts, via a second convolutional neural network, a structure of label patches. The structure includes an assignment of each of the at least one output of the first convolutional neural network to the predetermined number of clusters. A cluster loss is computed for the predicted structure of label patches, and an adversarial loss function is applied to the predicted structure of label patches to align the source domain and the target domain on a structural level.

Patent Agency Ranking