Abstract:
Techniques are provided for data management across a persistent memory tier and a file system tier. A block within a persistent memory tier of a node is determined to have up-to-date data compared to a corresponding block within a file system tier of the node. The corresponding block may be marked as a dirty block within the file system tier. Location information of a location of the block within the persistent memory tier is encoded into a container associated with the corresponding block. In response to receiving a read operation, the location information is obtained from the container. The up-to-date data is retrieved from the block within the persistent memory tier using the location information for processing the read operation.
Abstract:
Techniques are provided for implementing a file system format for persistent memory. A node, comprising persistent memory, receives an operation comprising a file identifier and file system instance information. A list of file system info objects are evaluated to identify a file system info object matching the file system instance information. An inofile, identified by the file system info object as being associated with inodes of files within an instance of the file system targeted by the operation, is traversed to identify an inode matching the file identifier. If the inode comprises an indicator that the file is tiered into the persistent memory, then the inode it utilized to facilitate execution of the operation upon the persistent memory. Otherwise, the operation is routed to a storage file system tier for execution by a storage file system upon storage associated with the node.
Abstract:
Techniques are provided for implementing a persistent memory storage tier to manage persistent memory of a node. The persistent memory is managed by the persistent memory storage tier at a higher level within a storage operating system storage stack than a level at which a storage file system of the node is managed. The persistent memory storage tier intercepts an operation targeting the storage file system. The persistent memory storage tier retargets the operation from targeting the storage file system to targeting the persistent memory. The operation is transmitted to the persistent memory.
Abstract:
Techniques are provided for implementing a file system format for persistent memory. A node, with persistent memory, receives an operation associated with a file identifier and file system instance information. A list of file system info objects are evaluated to identify a file system info object matching the file system instance information. An inofile, identified by the file system info object as being associated with inodes of files within an instance of the file system targeted by the operation, is traversed to identify an inode matching the file identifier. If the inode has an indicator that the file is tiered into the persistent memory, then the inode it utilized to facilitate execution of the operation upon the persistent memory. Otherwise, the operation is routed to a storage file system tier for execution by a storage file system upon storage associated with the node.
Abstract:
Methods, non-transitory computer readable media, and devices for dynamically changing a number of partitions at runtime in a hierarchical data partitioning model include determining a number of coarse mapping objects, determining a number of fine mapping objects, and setting a number of coarse partitions and a number of fine partitions based on the determined number of coarse mapping object and the determined number of fine mapping objects.
Abstract:
A method, non-transitory computer readable medium, and device that assists with caching filesystem metadata to a partner non-volatile random-access memory (NVRAM) includes caching metadata related to an incoming data modifying operation generated by a client computing device to at least one storage controller device in a cluster. A service interruption event that makes a data block present in the storage device of a hosting storage node inaccessible to the client computing device is determined for during the caching. The requested metadata block from the at least one NVRAM is retrieved when the service interruption event is determined. The cache is warmed using the retrieved metadata block from the at least one NVRAM.
Abstract:
A filesystem can be converted to a different version by creating a new data structure according to a new format of the different version and transforming the data from the filesystem to the new data structure. Transforming the data can include changing the format of the data in the filesystem to be compatible with the new data structure format. The data may be incorporated into the new data structure by copying the data, or creating indirect reference mechanisms to point to the original data.
Abstract:
Techniques are provided for data management across a persistent memory tier and a file system tier. A block within a persistent memory tier of a node is determined to have up-to-date data compared to a corresponding block within a file system tier of the node. The corresponding block may be marked as a dirty block within the file system tier. Location information of a location of the block within the persistent memory tier is encoded into a container associated with the corresponding block. In response to receiving a read operation, the location information is obtained from the container. The up-to-date data is retrieved from the block within the persistent memory tier using the location information for processing the read operation.
Abstract:
Techniques are provided for implementing write ordering for persistent memory. A set of actions are identified for commitment to persistent memory of a node for executing an operation upon the persistent memory. An episode is created to comprise a first subset of actions of the set of actions that can be committed to the persistent memory in any order with respect to one another such that a consistent state of the persistent memory can be reconstructed in the event of a crash of the node during execution of the operation. The first subset of actions within the episode are committed to the persistent memory and further execution of the operation is blocked until the episode completes.
Abstract:
Failover methods and systems for a storage environment are provided. During a takeover operation to take over storage of a first storage system node by a second storage system node, the second storage system node copies information from a first storage location to a second storage location. The first storage location points to an active file system of the first storage system node, and the second storage location is assigned to the second storage system node for the takeover operation. The second storage system node quarantines storage space likely to be used by the first storage system node for a write operation, while the second storage system node attempts to take over the storage of the first storage system node. The second storage system node utilizes information stored at the second storage location during the takeover operation to give back control of the storage to the first storage system node.