Abstract:
It is provided an optical field transmitter comprising a light source, one or more DA converters, an optical field modulator, a complex information multilevel signal generator circuit, and a phase pre-integration circuit. The optical field modulator modulates light output from the light source into a optical field signal by using the analog signal converted from a complex multilevel information signal including phase pre-integration complex information by the one or more DA converters. A phase angle of the complex multilevel information signal at a complex signal point is any one of values of integral multiples obtained by dividing 360 degrees by a positive integer N. An amplitude value of the complex multilevel information signal at the complex signal point is any one of values of a positive integer M. A total number of the complex signal points which may be taken is lower than a product of N and M.
Abstract:
The present invention relates to an optical modulator that generates quaternary amplitude modulated light without inter-symbol-interference by splitting input light into three optical paths, generating a continuous wave signal in a first optical path, generating binary phase modulated lights using a single drive MZ type optical phase modulator in second and third optical paths, and interfering them at in-phase and at field amplitude 1:a:b.
Abstract:
A problem to be solved in an optical communication system for carrying out bidirectional transmission between communication nodes by wavelength-division-multiplexed optical signals is that a plurality of optical add-drop multiplexers installed in the communication nodes are required for each transmission direction, and therefore, the communication cost is increased. An optical circulator or an optical coupler is arranged at an input/output port of the optical add-drop multiplexer and the wavelength-division-multiplexed optical signals are assembled for each transmission direction, whereby optical signals transmitted bidirectionally can be handled by one optical add-drop multiplexer.
Abstract:
The waveform deterioration detection range is broadened and multi bit rates can be handled. A chromatic dispersion compensator (or polarization mode dispersion compensator) (102) receives a waveform-deteriorated NRZ optical signal entered through an input fiber (101) and compensates it. On the other hand, an optical detector (106) receives part of output light and a sampling circuit (A/D converter) (107) performs asynchronous sampling of received waveform intensity. A control circuit (110) calculates the nth even moment (n is 4 or more) from an obtained waveform amplitude histogram and performs control to minimize its value.
Abstract:
Part of an inputted optical add signal 118 is reflected by a mirror 117, and is thereby inputted into an optical wavelength multiplexer 105 in the reverse direction so that the optical add signal is returned to paths 115-1 through 115-16 corresponding to wavelengths λ1 through λ16. If the returned optical add signal is an optical add signal having a correct wavelength, the optical signal enters its corresponding backward direction optical detector 113-16. Accordingly, it is possible to check whether or not a wavelength of the optical add signal is correct.
Abstract:
The present invention relates to an optical modulator that generates quaternary amplitude modulated light without inter-symbol-interference by splitting input light into three optical paths, generating a continuous wave signal in a first optical path, generating binary phase modulated lights using a single drive MZ type optical phase modulator in second and third optical paths, and interfering them at in-phase and at field amplitude 1:a:b.
Abstract:
The waveform deterioration detection range is broadened and multi bit rates can be handled. A chromatic dispersion compensator (or polarization mode dispersion compensator) (102) receives a waveform-deteriorated NRZ optical signal entered through an input fiber (101) and compensates it. On the other hand, an optical detector (106) receives part of output light and a sampling circuit (A/D converter) (107) performs asynchronous sampling of received waveform intensity. A control circuit (110) calculates the nth even moment (n is 4 or more) from an obtained waveform amplitude histogram and performs control to minimize its value.
Abstract:
Heretofore, it was necessary to individually locate an optical switch, an optical switch control circuit, and the like, before and after an optical transceiver that performs optical protection. As a result, costs and the space for implementation increase, and a delay in services is also caused, which were the problems. For the purpose of solving the above problems, the present invention provides a simple optical protection method used in an optical add-drop multiplexer. Add switches 105-1 through 105-N and drop switches 103-1 through 103-N for optical signals corresponding to each wavelength in an optical add-drop multiplexer 100 are made controllable independently of one another. Add switches and drop switches of the active-side and backup-side optical add-drop multiplexers are switched by optical switch control circuits 106-1 through 106-N respectively to make a detour around a failure so that the optical protection is achieved.
Abstract:
A transponder which may form part of communication device such as an optical transmitters device includes an optical receiver for receiving a high speed optical information signal and for converting the high speed optical information signal to an electrical signal, a demultiplexing circuit for separating the electrical signal into a plurality of low speed information signals, a plurality of optical transmitters each of which converts one of the low speed electrical signals into an optical signal of mutually different wavelengths, and a propagation delay difference compensating circuit. The propagation delay difference compensating circuit is provided between the demultiplexing circuit and the plurality of optical transmitters and compensates mutual propagation delay differences of each of the optical signals outputted from the optical transmitters.
Abstract:
A method for enabling a pump laser to be added on by means of an optical fiber Raman amplifier and reducing signal degradation to be caused by a gain change to occur after and in the pump laser source add-on process. The above method is achieved as follows. Add-on ports 114-1 and 114-2 are provided in a wavelenth multiplexer 110 so as to enable new wavelength pump laser sources to be added on. When an add-on pump laser source 112 is turned on, the output intensity of each of the pre-installed Raman pump lasers 111-1 and 111-2 changes, thereby the intensity of each signal laser in each pre-installed band is kept unchanged before and after the add-on. The output intensity of each pump laser source that increases/decreases the output, for example, during the add-on is changed linearly with time, thereby the transient gain changes in the pre-installed bands are prevented.