摘要:
A problem to be solved in an optical communication system for carrying out bidirectional transmission between communication nodes by wavelength-division-multiplexed optical signals is that a plurality of optical add-drop multiplexers installed in the communication nodes are required for each transmission direction, and therefore, the communication cost is increased. An optical circulator or an optical coupler is arranged at an input/output port of the optical add-drop multiplexer and the wavelength-division-multiplexed optical signals are assembled for each transmission direction, whereby optical signals transmitted bidirectionally can be handled by one optical add-drop multiplexer.
摘要:
In a quaternary phase modulator including two phase modulators disposed in parallel and a phase adjuster that adjusts a phase difference when the outputs of the two phase modulators are combined, there are provided a second light source that introduces light propagated in a backward direction, a first controller that controls the bias of the two phase modulators so that the intensity of the backward light is a minimum on the input side of the quaternary phase modulator, and a second controller that controls the bias of the phase adjuster so that a result monitored by a photodiode having a bandwidth not exceeding the bit rate on the output side of the quaternary phase modulator is a minimum, the first controller being implemented after the second controller is implemented.
摘要:
It was difficult to detect a wavelength error. Further, a wavelength error of an optical add signal is accompanied by a calculation error of the number of wavelengths of a wavelength division multiplexing signal, which causes a set value of an optical signal level to become abnormal, resulting in the degradation of the optical signal. According to the present invention, part of an inputted optical add signal 118 is reflected by a mirror 117, and is thereby inputted into an optical wavelength multiplexer 105 in the reverse direction so that the optical add signal is returned to paths 115-1 through 115-16 corresponding to wavelengths λ1 through λ16. If the returned optical add signal is an optical add signal having a correct wavelength (in FIG. 1, λ16), the optical signal enters its corresponding backward direction optical detector 113-16. Accordingly, it is possible to check whether or not a wavelength of the optical add signal is correct.
摘要:
In a quaternary phase modulator including two phase modulators disposed in parallel and a phase adjuster that adjusts a phase difference when the outputs of the two phase modulators are combined, there are provided a second light source that introduces light propagated in a backward direction, a first controller that controls the bias of the two phase modulators so that the intensity of the backward light is a minimum on the input side of the quaternary phase modulator, and a second controller that controls the bias of the phase adjuster so that a result monitored by a photodiode having a bandwidth not exceeding the bit rate on the output side of the quaternary phase modulator is a minimum, the first controller being implemented after the second controller is implemented.
摘要:
A problem to be solved in an optical communication system for carrying out bidirectional transmission between communication nodes by wavelength-division-multiplexed optical signals is that a plurality of optical add-drop multiplexers installed in the communication nodes are required for each transmission direction, and therefore, the communication cost is increased. An optical circulator or an optical coupler is arranged at an input/output port of the optical add-drop multiplexer and the wavelength-division-multiplexed optical signals are assembled for each transmission direction, whereby optical signals transmitted bidirectionally can be handled by one optical add-drop multiplexer.
摘要:
Part of an inputted optical add signal 118 is reflected by a mirror 117, and is thereby inputted into an optical wavelength multiplexer 105 in the reverse direction so that the optical add signal is returned to paths 115-1 through 115-16 corresponding to wavelengths λ1 through λ16. If the returned optical add signal is an optical add signal having a correct wavelength, the optical signal enters its corresponding backward direction optical detector 113-16. Accordingly, it is possible to check whether or not a wavelength of the optical add signal is correct.
摘要:
A data transmission system comprising a transmitter and a receiver. The transmitter comprises a phase encoder for partitioning consecutive bit data to be input in data in units of X bits; and converting a 2x value indicated by the data of X bits in unique association with an (N/2−1)Y value of a Y symbol, and for confining use of signal points, from among the signal points of N-ary phase, only to a signal point P1 (at a phase angle 0) and N/2−2 signal points P(2n+2) (where 1≦n
摘要:
A data transmission system comprising a transmitter and a receiver. The transmitter comprises a phase encoder for partitioning consecutive bit data to be input in data in units of X bits; and converting a 2x value indicated by the data of X bits in unique association with an (N/2-1)Y value of a Y symbol, and for confining use of signal points, from among the signal points of N-ary phase, only to a signal point P1 (at a phase angle 0) and N/2-2 signal points P(2n+2) (where 1≦n
摘要翻译:一种数据传输系统,包括发射机和接收机。 发射机包括相位编码器,用于分割以X位为单位输入数据的连续位数据; 并且将由X位的数据指示的2×SUP值转换为与Y符号的(N / 2-1)“Y”值唯一关联,并限制使用 的信号点从N相相位的信号点仅到信号点P 1(相位角0)和N / 2-2信号点P(2n + 2)(其中1 <= n < N / 2-2)。 接收机包括相位解码器,用于当接收到不同于允许使用的信号点的信号点时通知错误检测,并且通过将信号点改变为具有较小汉明距离的信号点来进行纠错。
摘要:
In an optical receiver of a long-haul high-speed WDM/OADM system, a control technique is provided that can accurately control a variable dispersion compensator with an inexpensive configuration even under strict SNR conditions. Signal reception characteristic data (a bit error rate, a clock extraction result, and a frame synchronization result) is obtained and an optimum dispersion compensation amount of the dispersion compensator is calculated. The signal reception characteristic data is saturated by a high SNR. In the case where desired dispersion control accuracy cannot be obtained, an input level of a photodiode is reduced by controlling an output level of an amplifier or a variable optical attenuator. Further, in a state in which a received SNR is deteriorated, the signal reception characteristic data is obtained and the optimum dispersion compensation amount of the dispersion compensator is calculated again.
摘要:
An optical transmission apparatus includes a demultiplexer for separating wavelength-division multiplexing light received from a first optical transmission line into signals of different wavelengths to transmit the signals to an outside and a multiplexer for multiplexing signals of different wavelengths received from the outside to transmit multiplexed signals to a second optical transmission line. An input check unit is provided for monitoring a power level of a signal separated by the demultiplexer and for providing an output indicative thereof. An output adjuster is provided for intercepting a signal from the outside so as to inhibit receipt of the signal from the outside by the multiplexer depending on the output of the input check unit.