Abstract:
An optoelectronic device is provided which comprises an organic active layer (5) provided for generating electromagnetic radiation and a first electrode (1) provided for electrical contacting of the active layer, wherein the first electrode comprises a first electrode layer (11) and a first connection layer (12) spaced at least in places from the first electrode layer, the active layer is arranged at least in places between the first electrode layer and the first connection layer, and the first electrode comprises at least one through via (13) which extends through the active layer and, in so doing, forms an electrical contact between the first electrode layer and the first connection layer. A method for producing such a device is furthermore provided.
Abstract:
Various embodiments may relate to a method for producing an optoelectronic component, including forming a first electrode on a substrate, arranging a first mask structure on or above the substrate, wherein the first mask structure comprises a first structuring region including an opening and/or a region prepared for forming an opening, arranging a second mask structure on or above the first mask structure, forming a second structuring region in the first mask structure and in the second mask structure in such a way that at least one part of the first structuring region in the first mask structure is formed outside the second structuring region in the first mask structure.
Abstract:
In various exemplary embodiments, a method for producing an optoelectronic component is provided. In this case, a high temperature solid is provided which is stable at least up to a predefined first temperature. A liquid glass solder having a second temperature, which is lower than the first temperature, is applied to the high temperature solid in a structured fashion. The glass solder is solidified, as a result of which a glass solid is formed. An optoelectronic layer structure is formed above the glass solid. The glass solid and the optoelectronic layer structure form the optoelectronic component. The optoelectronic component is removed from the high temperature solid.
Abstract:
An optoelectronic component may include a first electrically conductively formed layer, including an electrically conductive substance in a matrix, a second electrically conductively formed layer, and an electrically conductively formed thin film encapsulation between the first electrically conductively formed layer and the second electrically conductively formed layer. The electrically conductively formed thin film encapsulation is formed in such a way that the second electrically conductively formed layer is electrically conductively connected to the first electrically conductively formed layer by the electrically conductively formed thin film encapsulation, and the electrically conductively formed thin film encapsulation is formed in a hermetically impermeable fashion with respect to a diffusion of water and/or oxygen from the first electrically conductively formed layer through the electrically conductively formed thin film encapsulation into the second electrically conductively formed layer.
Abstract:
In various embodiments, glassware is provided. The glassware may include a glass matrix having a surface, a first type of particles, and at least one second type of particles, wherein the particles of the second type have a higher refractive index than the particles of the first type, wherein the particles of the first type are completely surrounded by the glass matrix, such that the surface of the glass matrix is free of particles of the first type, and the particles of the second type are arranged above and/or between the particles of the first type at least partly in the glass matrix at the surface of the glass matrix in order to increase the refractive index of the glassware.
Abstract:
A radiation emitting apparatus including a substrate, at least one layer sequence arranged on the substrate and producing electromagnetic radiation in a wavelength range, having at least one first electrode surface, at least one second electrode surface, and at least one functional layer between the first electrode surface and the second electrode surface, wherein the functional layer produces electromagnetic radiation in the wavelength range in a switched-on operating state, and a scatter layer having a first region and a second region, wherein radiation produced by the functional layer is directly incident on the scatter layer only in the first region of the scatter layer, and the scatter layer at least partially scatters radiation incident upon the first region of the scatter layer so that said radiation enters the second region of the scatter layer.
Abstract:
A method of producing a component module includes providing a component holder having a curved upper side and a radiation-emitting bendable component, and bending and fastening the component to the upper side so that the component has a curved shape.
Abstract:
A light-emitting module including a light-emitting component and a resilient body is provided. The light-emitting component includes a light-emitting layer structure for generating light and includes a light-emitting main face through which the generated light leaves the light-emitting component. The resilient body, which is arranged over the light-emitting main face, is connected firmly to the light-emitting component, includes at least one light-deviating region, and includes a free-lying surface which includes at least one surface element, which lies at a distance greater than or equal to 4 mm from the light-emitting layer structure.
Abstract:
In various exemplary embodiments, a method for producing an optoelectronic component is provided. In this case, a high temperature solid is provided which is stable at least up to a predefined first temperature. A liquid glass solder having a second temperature, which is lower than the first temperature, is applied to the high temperature solid in a structured fashion. The glass solder is solidified, as a result of which a glass solid is formed. An optoelectronic layer structure is formed above the glass solid. The glass solid and the optoelectronic layer structure form the optoelectronic component. The optoelectronic component is removed from the high temperature solid.
Abstract:
A method for producing an organic light-emitting diode and an organic light-emitting diode are disclosed. In an embodiment, the method includes providing a substrate with a continuous application surface, generating multiple adhesion regions on the application surface, the adhesion regions being completely surrounded by the application surface, applying metal nanowires over the entire surface of the application surface, removing the metal nanowires outside of the adhesion regions by a washing process using a solvent such that the remaining metal nanowires completely or partly form a light-permeable electrode of the organic light-emitting diode, and applying an organic layer sequence onto the light-permeable electrode.