Abstract:
A light emitting component is disclosed. In an embodiment a light-emitting device includes at least one active layer stack configured to generate light, a first electrode electrically contacting the at least one active layer stack, a second electrode electrically contacting the at least one active layer stack and at least one light-emitting face for emitting light. The device further includes a first contact structure electrically conductively connected to the first electrode and a second contact structure electrically conductively connected to the second electrode, wherein the first contact structure laterally surrounds a major part of the at least one light-emitting face and a major part of the second contact structure, and wherein the second contact structure laterally surrounds a major part of the at least one light-emitting face.
Abstract:
An organic light-emitting diode includes a carrier substrate, a scattering layer, a first electrode, an organic layer sequence with at least one active layer, and a second electrode wherein all the components are arranged in the stated sequence, the scattering layer has a higher average refractive index than the organic layer sequence, the first electrode has at least n or at least n+1 non-metal layers and n metal layers, n is a natural number greater than or equal to 1 or greater than or equal to 2, and the non-metal layers and the metal layers succeed one another alternately.
Abstract:
Various embodiments may relate to a method for processing an electronic component. The method includes applying a planar structure provided with predetermined separation locations to the electronic component, and removing a part of the applied planar structure, wherein removing includes separating the planar structure at the predetermined separation locations.
Abstract:
An organic light-emitting component is disclosed. The organic light emitting component includes a substrate and at least one layer sequence arranged on the substrate and suitable for generating electromagnetic radiation. The at least one layer sequence may include at least one first electrode area arranged on the substrate, at least one second electrode area arranged on the first electrode area, a basic color unit arranged between the first electrode area and the second electrode area and a plurality of color units arranged between the basic color unit and the first or second electrode area, wherein the plurality of color units are arranged laterally offset to one another, and wherein the basic color unit and each of the plurality of color units respectively comprises at least one organic light-emitting layer.
Abstract:
Various embodiments may relate to a method for working an apparatus having at least one electrical layer structure. The electrical layer structure includes a dielectric layer in physical contact with an electrically conductive layer and the electrical layer structure has a first electrical conductivity. The method may include forming an electrical connection to the dielectric layer of the electrical layer structure, and forming an electrical voltage profile at the electrical connection in such a way that a second electrical conductivity is formed; wherein the second electrical conductivity is greater than the first electrical conductivity. The electrical layer structure has the second electrical conductivity after the reduction of the electrical voltage profile.
Abstract:
An organic light-emitting diode includes a carrier substrate, a scattering layer, a first electrode, an organic layer sequence with at least one active layer, and a second electrode wherein all the components are arranged in the stated sequence, the scattering layer has a higher average refractive index than the organic layer sequence, the first electrode has at least n or at least n+1 non-metal layers and n metal layers, n is a natural number greater than or equal to 1 or greater than or equal to 2, and the non-metal layers and the metal layers succeed one another alternately.
Abstract:
A component module is disclosed that includes a component holder having a curved upper side, and a radiation-emitting component arranged in a curved shape on the upper side. In some implementations, the radiation emitting component includes a substrate. In some implementations, a neutral fiber runs outside the substrate.
Abstract:
The organic light-emitting diode (1) has a first electrode (21) with a first electric conductivity and a second electrode (22) with a second lower electric conductivity. An organic layer stack (4) for generating light is located between the electrodes (21, 22). The light-emitting diode (1) further comprises a current distribution layer (3) with a third high electric conductivity. When seen in a plan view, multiple contact regions (33) are located outside of an outer contour line (40) of the layer stack (4). The second electrode (22) and the current distribution layer (3) contact each other in the contact regions (33). In a current blocking region (34), the current distribution layer (3) is located entirely within the contour line (40) such that the second electrode (22) is electrically disconnected from the current distribution layer (3). The luminous intensity of a lighting surface (11) of the light-emitting diode (1) is preferably set in a controlled manner via the distribution of the contact regions (33) and the current blocking regions (34).
Abstract:
An element (1) is provided for stabilising an optoelectronic device (7), wherein the element (1) comprises a main body (1C), wherein the main body (1C) consists of a glass or at least comprises a glass and wherein the main body (1C) comprises a first and a second surface (1A, 1B). The first and second surface (1A, 1B) are opposite to one another and extend in each case in a lateral main direction of extension of the element (1), wherein a protective layer (2A, 2B) is formed at least at one of the surfaces (1A, 1B) and wherein the protective layer (2A, 2B) is configured and arranged in such a way that cracks (3) present in the main body (1C) are filled in by a material of the protective layer (2A, 2B). In addition, an optoelectronic device (7) is provided.
Abstract:
In various embodiments, an organic optoelectronic component is provided. The organic optoelectronic component may include a first electrode, an organic functional layer structure over the first electrode, and a second electrode over the organic functional layer structure. Optionally, the organic functional layer structure includes a charge carrier pair generation layer structure. At least one of the electrodes and/or the charge carrier pair generation layer structure includes electrically conductive nanostructures, the surfaces of which are at least partially coated with a coating material.