Abstract:
A fiber optic cable assembly a termination assembly attached at the first and second ends of the ribbon. The ferrule has a polished contact surface that exposes ends of the optical fibers, and the contact surface forms an oblique angle relative to a plane normal to axes defined by the fibers. Each contact surface is slightly rotated clockwise or slightly rotated counter-clockwise with respect to the normal of the plane defined by the fiber array, so that when the second end of one cable assembly is mated to the first end of a second cable assembly in Key-Up to Key-Up Method B adapter configuration, the angled ferrule surfaces abut.
Abstract:
Methods for estimating the Effective Modal Bandwidth (EMB) of laser optimized Multimode Fiber (MMF) at a specified wavelength, λS, based on the measured EMB at a first reference measurement wavelength, λM. In these methods the Differential Mode Delay (DMD) of a MMF is measured and the Effective Modal Bandwidth (EMB) is computed at a first measurement wavelength. By extracting signal features such as centroids, peak power, pulse widths, and skews, as described in this disclosure, the EMB can be estimated at a second specified wavelength with different degrees of accuracy. The first method estimates the EMB at the second specified wavelength based on measurements at the reference wavelength. The second method predicts if the EMB at the second specified wavelength is equal or greater than a specified bandwidth limit.
Abstract:
Examples disclosed herein illustrate systems and methods to determine and evaluate the quality of mechanical splices of optical fibers using insertion loss estimation. In at least some of the disclosed systems and methods, an optical fiber termination system may include a reference fiber coupling a light source and a stub fiber of a fiber optic connector, a digital camera sensor and lens to capture images of scattered light emanating from a portion of the fiber optic connector and a portion of the reference fiber both in a field of view (FOV) of the digital camera sensor, and a processor. The processor may analyze digital images of scatter light emitted from at least a portion of the fiber optic connector and the reference fiber to estimate insertion loss at the fiber optic connector.
Abstract:
The present invention generally relates to the field of fiber optics, and more particularly, to apparatuses, systems, and methods directed towards improving effective modal bandwidth within a fiber optic communication environment. In an embodiment, a multimode optical fiber in accordance with the present invention comprises a core and cladding material system where the refractive indices of the core and cladding are selected to modify the shape of the profile dispersion parameter, y, as a function of wavelength in such a way that the alpha parameter (α-parameter), which defines the refractive index profile, produces negative relative group delays over a broad range of wavelengths. The new shape of the profile dispersion parameter departs from traditional fibers where the profile dispersion parameter monotonically decreases around the selected wavelength that maximizes the effective modal bandwidth (EMB).
Abstract:
The present invention generally relates to the field of fiber optics, and more specifically to optical fibers, methods of manufacturing optical fibers, and methods of classifying optical fibers. In an embodiment, the present invention is a multimode optical fiber which comprises a core and clad material system where the refractive indices of the core and cladding are selected to minimize chromatic dispersion in the 850 nm wavelength window and the refractive index profile is optimized for minimum modal-chromatic dispersion in channels utilizing VCSEL transceivers. Multimode optical fibers according to this embodiment may have increased channel bandwidth.
Abstract:
Methods for designing improved multimode fiber optic cables are provided. In an embodiment, the method includes measuring a DMD waveform profile of a reference multimode fiber optic cable, where the reference multimode fiber optic cable has a reference refractive index profile. The method of this embodiment further includes designing an improved refractive index profile for the improved multimode fiber optic cable, where the improved refractive index profile comprises the reference refractive index profile modified by a quantity Δn(r), where r is a radius from the center of the core, where the quantity Δn(r) is negative over at least some radial window, and where the quantity Δn(r) follows a function such that the improved multimode fiber optic cable having the improved refractive index profile produces a DMD waveform profile having a shift to the left in radial pulse waveforms for increasing radii.
Abstract:
A new metric applicable to the characterization and design of multimode fiber (MMF) is described. The metric is derived from a Differential Mode Delay (DMD) measurement and when used in combination with industry-standard metrics such as Effective Modal Bandwidth (EMB) and DMD, yields a more accurate prediction of MMF channel link performance as measured by Bit Error Rate (BER) testing. The metric can also be used in the design of MMF for improved bandwidth performance. When implemented as a test algorithm in production, it can be used to select, sort, or verify fiber performance. This process can yield a multimode fiber design with a greater performance margin for a given length, and/or a greater length for a given performance margin.
Abstract:
An air-gap HCF connector termination method and connector assembly for factory and field connector assembly termination for patch cables and trunk cables made from HCF, where in multitude of mechanisms can facilitate air-gap between the first and second HCF fiber end-faces, comprising preparing the HCF end-faces using appropriate cleaving methods including mechanical, ultrasonic and laser cleaving, such that the air-gap separation between first and second HCF's can be anywhere between 0.5-100 microns, where reflection at the connector interface is low with RL>35 dB, due to HCF propagation mode effective index matching with index of air.
Abstract:
An optical interconnection assembly for a Spine-and-Leaf network is disclosed. The optical interconnection assembly has Spine multi-fiber optical connectors and Leaf multi-fiber optical connectors. The Spine optical connectors of the interconnection assembly are optically connected to multi-fiber connectors of Spine switches via Spine patch cords. The leaf multi-fiber connectors are optically connected to Leaf multi-fiber connectors of Leaf switches via Leaf patch cords. An array of simplex fiber optic cables in said interconnection assembly serve to optically connect every Spine multi-fiber connector to every Leaf multi-fiber connector so that every Spine switch is optically connected to every Leaf switch. The optical interconnection assembly facilitates network Spine-and-Leaf interconnections and the ability to scale-out the network by installing additional assemblies, Leaf switches, and Spine switches.
Abstract:
An apparatus having at least two user interfacing I/O data communication transceivers. The I/O transceiver utilizes either electrical or optical signaling based on user preference with each I/O transceiver being electrically connected back-to-back to a WDM transceiver in the apparatus. The optical media dependent interface of each WDM transceiver has a uniquely specified wavelength and optical ports of the WDM transceivers are connected to the corresponding wavelength ports of a WDM device. The discrete optical wavelengths are multiplexed or demultiplex onto a duplex pair of optical fibers by means of the WDM device in order to convert the interfacing I/O signals to the appropriate optical wavelengths to facilitate pre-configured WDM optical communications.