摘要:
Compatibility between a depth image consumer and a plurality of different depth image producers is provided by receiving a native depth image having unsupported depth camera parameters that are not compatible with a depth image consumer, and converting the native depth image to a virtual depth image having supported virtual depth camera parameters that are compatible with the depth image consumer. This virtual depth image is then output to the depth image consumer.
摘要:
A system and method for identifying a pointing organ or a pointing device in a field of imaging of a 3-D imaging system and for calculating a line of pointing relative to this organ or device are disclosed. The method and system may be used to enable a user to communicate with computer programs, such as computer games, 3-D design programs and the like. The method and system may further employ a trigger-like mechanism to identify a movement of a user that may be interpreted as trigger activation.
摘要:
A photo filter (e.g., artistic/stylized painting) light field effect system includes an eyewear device having a frame, a temple connected to a lateral side of the frame, and a depth-capturing camera. Execution of programming by a processor configures the stylized image painting effect system to apply a photo filter selection to: (i) a left raw image or a left processed image to create a left photo filter image, and (ii) a right raw image or a right processed image to create a right photo filter image. The stylized image painting effect system generates a photo filter stylized painting effect image with an appearance of a spatial rotation or movement, by blending together the left photo filter image and the right photo filter image based on a left image disparity map and a right image disparity map.
摘要:
Systems and method for correcting images including artifacts due to dirty camera lenses of electronic device are disclosed. Correction of images by the systems and methods includes obtaining a first raw pixel image of a scene captured with a first camera, obtaining a second raw image of the scene captured with a second camera separate from the first camera in a camera baseline direction, rectifying the first and second raw pixel images to create respective first and second rectified pixel images, determining disparity correspondence between corresponding image pixel pairs of the first and second rectified images in the camera baseline direction, mapping first and second rectified images into the same domain using the determined disparity, detect image artifact regions within each domain mapped image by comparing corresponding regions of the domain mapped images, determining correction factors for each detected image artifact region, and correcting the rectified first and second images by applying the determined correction factors.
摘要:
A wearable apparatus configured to acquire zoom images of a portion of an environment viewed by a user responsive to determining a point of regard of the user.
摘要:
A video projector device includes a visible light projector to project an image on a surface or object, and a visible light sensor, which can be used to obtain depth data regarding the object using a time-of-flight principle. The sensor can be a charge-coupled device which obtains color images as well as obtaining depth data. The projected light can be provided in successive frames. A frame can include a gated sub-frame of pulsed light followed by continuous light, while the sensor is gated, to obtain time of flight data, an ungated sub-frame of pulsed light followed by continuous light, while the sensor is ungated, to obtain reflectivity data and a background sub-frame of no light followed by continuous light, while the sensor is gated, to determine a level of background light. A color sub-frame projects continuous light, while the sensor is active.
摘要:
Embodiments are disclosed that relate to calibrating an eye tracking system for a computing device. For example, one disclosed embodiment provides, in a computing device comprising a gaze estimation system, a method of calibrating the gaze estimation system. The method includes receiving a request to log a user onto the computing device, outputting a passcode entry display image to a display device, receiving image data from one or more eye tracking cameras, and from the image data, determining a gaze scanpath representing a path of a user's gaze on the passcode entry display image. The method further includes comparing the gaze scanpath to a stored scanpath for the user, and calibrating the gaze estimation system based upon a result of comparing the gaze scanpath to the stored scanpath for the user.
摘要:
Techniques are provided for de-aliasing depth images. The depth image may have been generated based on phase differences between a transmitted and received modulated light beam. A method may include accessing a depth image that has a depth value for a plurality of locations in the depth image. Each location has one or more neighbor locations. Potential depth values are determined for each of the plurality of locations based on the depth value in the depth image for the location and potential aliasing in the depth image. A cost function is determined based on differences between the potential depth values of each location and its neighboring locations. Determining the cost function includes assigning a higher cost for greater differences in potential depth values between neighboring locations. The cost function is substantially minimized to select one of the potential depth values for each of the locations.
摘要:
A computing system generates a depth map from at least one image, detects objects in the depth map, and identifies anomalies in the objects from the depth map. Another computing system identifies at least one anomaly in an object in a depth map, and uses the anomaly to identify future occurrences of the object. A system includes a three dimensional (3D) imaging system to generate a depth map from at least one image, an object detector to detect objects within the depth map, and an anomaly detector to detect anomalies in the detected objects, wherein the anomalies are logical gaps and/or logical protrusions in the depth map.
摘要:
Techniques are provided for determining depth to objects. A depth image may be determined based on two light intensity images. This technique may compensate for differences in reflectivity of objects in the field of view. However, there may be some misalignment between pixels in the two light intensity images. An iterative process may be used to relax a requirement for an exact match between the light intensity images. The iterative process may involve modifying one of the light intensity images based on a smoothed version of a depth image that is generated from the two light intensity images. Then, new values may be determined for the depth image based on the modified image and the other light intensity image. Thus, pixel misalignment between the two light intensity images may be compensated.