摘要:
A liquid crystal display (LCD) including a backlight module and a liquid crystal display panel is provided. The backlight module has at least one white light source. BL1 and BL2 respectively represent relative maximum brightness peaks of an emission spectrum of the backlight module at a wavelength between 500 nm and 525 nm and between 530 nm and 560 nm, in which BL1/BL2≧0.32. The liquid crystal display panel is disposed above the backlight module, and has two substrates and a liquid crystal layer sandwiched therebetween. One of the two substrates has a red filter layer, a green filter layer, and a blue filter layer, in which transmittances of the red filter layer and the green filter layer at wavelength of approximately 590 nm are both smaller than about 45%.
摘要:
In a multi-domain vertical alignment liquid crystal display wherein a pixel that has two sub-pixels, an additional switching element is used to achieve a voltage differential between the electrode voltage potential in one sub-pixel and the other during and after the charge-sharing period. The electrodes in the sub-pixels are connected to each other through a charge-sharing capacitor and a controlling switching element, such as another transistor. Before the charge-sharing period, the controlling switching element is operated in a non-conducting state and the voltage potentials of the sub-pixel electrodes are substantially equal. During the charge-sharing period, the controlling switching element is operated in a conducting state to facilitate charge-sharing. The additional switching element is used to achieve the voltage differential more effectively and without additional capacitors.
摘要:
A liquid crystal display includes a plurality of pixels defined by adjacent scan lines and data lines. Each pixel includes a first sub-pixel defined by the scan line and a first common electrode line and a second sub-pixel defined by the scan line and a second common electrode line. The first common electrode line is connected to at least one of the voltage sources. The second common electrode is electrically connected to two of the voltage sources through a first and a second switch devices. The two switch devices are connected to different scan lines.
摘要:
A method for driving a liquid crystal display is disclosed. A driving voltage corresponding to a gray scale is provided during a first interval of a time period to drive a pixel in response to the gray scale, and a reset voltage responsive to the gray scale is provided during a second interval of the time period.
摘要:
A pixel unit in the present invention is divided into two sub-pixels. Each sub-pixel includes a thin film transistor, a liquid crystal capacitor and a storage capacitor. The two transistors respectively located in different sub-pixels are connected to different scan lines. One of the two transistors is connected to the data line through another transistor. Therefore, two different pixel voltages are formed in a pixel.
摘要:
A liquid crystal display includes a plurality of scan lines arranged in parallel, a plurality of data lines arranged in parallel and crossing the scan lines, and a plurality of switching devices respectively formed in the locations of the scan lines crossing the data lines, the switching devices connected with same scan line are arranged on the two sides of the scan line and are located in the corresponding pixel respectively, wherein each pixel includes two switching devices and one switching device is connected to the corresponding data line through the other switching device.
摘要:
A display device includes a rescue circuit line structure having a first conductive pattern for interconnecting electrically two circuit elements. The first conductive pattern is formed with an open for electrically disconnecting the circuit elements. A dielectric layer is disposed above the first conductive pattern in such a manner to cover the open. A second conductive pattern is disposed on the dielectric layer. A melting process is conducted onto the dielectric layer to interconnect electrically the second conductive pattern and the first conductive pattern so that signals can be passed between the circuit elements.
摘要:
A dual single-ended driven LCD and driving method thereof are provided. The LCD comprises a pixel, a data line, a first scan driver, a second scan driver, a first scan line and a second scan line. The pixel comprises a first and a second switches. The control ends of the first and the second switches are electrically connected to the first and the second scan lines respectively. The first scan driver is located on one side of the pixel and is electrically connected to the first scan line. The second scan driver is located on another side of the pixel and is electrically connected to the second scan line. The first scan driver and the second scan driver respectively drive the first and the second scan lines. The data line is electrically connected to the first the second switches for transmitting image data to the pixel.
摘要:
A touch pixel array substrate suitable for a touch display panel includes a first substrate, scan lines, data lines, signal-control lines, read-out lines, voltage-shielding lines, active devices, pixel electrodes, and photo-sensing units. The scan lines, the data lines, the signal-control lines, the read-out lines, and the voltage-shielding lines are located on the first substrate. Each of the read-out lines is located between two adjacent data lines. Each of the voltage-shielding lines is located between one of the read-out lines and one of the data lines. Both sides of each of the read-out lines are adjacent to two voltage-shielding lines. The photo-sensing units are located on the first substrate and electrically connected to the scan lines, the signal-control lines, and the read-out lines correspondingly. A touch display panel and a touch pixel structure are also provided.
摘要:
A touch sensing apparatus and a touch sensing method are provided. The touch sensing apparatus includes a plurality of capacitance touch sensors and a post-processing circuit. Each of the capacitance touch sensors determines a value of an output current according to a distance between two electrodes of a touch sensing capacitor thereof. The post-processing circuit performs an integration operation for output currents to obtain a plurality of voltage values. The post-processing circuit further judge whether a touch event occurs according to a voltage difference between two voltage values corresponding to two capacitance touch sensors thereof, to further determine whether calculating a coordinate of a touch position. There is a linear relation between a variation of each of the voltage values and a variation of a distance between the two electrodes of the corresponding touch sensing capacitor.