摘要:
Described embodiments provide a method and system for signal compensation in a SERDES communication system that includes monitoring the quality of a data signal after passing through a transmission channel. The quality of the data signal is monitored with at least one of a BER calculation algorithm and a received eye quality monitoring algorithm. Variations in channel length of the transmission channel are compensated for by i) adjusting a length of transmission line delay of the data signal from the transmission channel, ii) comparing the data signal quality with a threshold for the adjusted data signal; and iii) repeating i) and ii) until the data signal quality meets the threshold.
摘要:
Described embodiments provide a method and system for signal compensation in a SERDES communication system that includes monitoring the quality of a data signal after passing through a transmission channel. The quality of the data signal is monitored with at least one of a BER calculation algorithm and a received eye quality monitoring algorithm. Variations in channel length of the transmission channel are compensated for by i) adjusting a length of transmission line delay of the data signal from the transmission channel, ii) comparing the data signal quality with a threshold for the adjusted data signal; and iii) repeating i) and ii) until the data signal quality meets the threshold.
摘要:
Methods and apparatus are provided for generating one or more clock signals for a decision-feedback equalizer using DFE detected data, in the presence of an adverse pattern, such as a Nyquist pattern. A received signal is sampled using a data clock and a transition clock to generate a data sample signal and a transition sample signal. A DFE correction is obtained for each of the data sample and transition sample signals to generate DFE detected data and a DFE transition data. The DFE detected data and DFE transition data are then applied to a phase detector that generates a signal to adjust a phase of one or more of the data clock and transition clock. One or more of said phase updates are modified by the present invention if said DFE detected data satisfies one or more predefined conditions. A number of mechanisms are disclosed for qualifying or modifying the DFE phase detector updates based on the detected data pattern.
摘要:
A first set of data is detected in a signal having synchronous samples and interpolated samples, wherein the first set of data is detected asynchronously as corresponding to one of the samples. A time to transmit a data-found signal is determined based on an offset between the data-detected sample and one of the synchronous samples, and the data-found signal is transmitted at the determined time to enable the synchronous processing of the synchronous samples. In one implementation, the synchronous samples correspond to a readback signal read from a data recording channel, the first set of data corresponds to servo address mark (SAM) data in a servo sector in the readback signal, and the synchronous processing is demodulation of burst data in the servo sector.
摘要:
A repeatable read-out (RRO) detector employs one or more digital interpolators to interpolate asynchronous sample values that represent RRO data. The asynchronous sample values are read from a recording medium and generated by an A/D converter at a symbol rate, and the interpolators generate interpolated samples at at least one time in between the asynchronous sample value times. Each interpolated sample corresponding to some phase relative to that of the sample values generated by the A/D converter. The RRO detector receives 1) the asynchronous samples at symbol rate and 2) the interpolated samples to efficiently detect the encoded RRO data. An RRO address mark indicates when detection of encoded RRO data starts, and is employed to select those samples suitable for RRO data detection. Detection of the RRO address mark employs peak detection among filtered asynchronous and interpolated samples. The process of peak detection adjusts the current best phase for sample selection. When the RRO address mark is found, the corresponding best phase corresponds to either asynchronous sampled values or interpolated samples that are subsequently selected for RRO data detection, termed best samples. Once the best phase is selected, the RRO data detector uses that information along with RRO encoding constraints to decode the encoded RRO data from the best samples.
摘要:
A repeatable run-out (RRO) detector employs one or more digital interpolators to interpolate asynchronous sample values representing an RRO address mark (AM) and RRO data, an asynchronous maximum-likelihood (AML) detector to detect the RRO AM, and a RRO data decoder to decode the RRO data. The AML detector employs an AML algorithm, such as a Viterbi algorithm, to detect the series of peaks of the RRO AM based on detection of the entire sequence of observed peaks. AML detection selects one of either the asynchronous or interpolated sample sequences that are closest in distance to the ideal RRO AM sample sequence. Once the RRO AM is detected, the AML detector provides a RRO AM found signal as well as the selected one of the sample sequences having the best phase for detecting and decoding the RRO data.
摘要:
A system for block encoding and block decoding of servo data with a rate (M/N) code, where M is an integer greater than 1 and N is an integer that is greater than M. Two codes are described for the encoding and decoding processes: a rate (2/6) code and a rate (2/8) code. In general, block encoding and block decoding maps between M servo data bits and N coded symbol bits. Such block encoding with a rate (M/N) code may be employed in a magnetic recording system for encoding servo data that is written to a servo data sector on a magnetic recording medium. Encoded servo data is read from the magnetic medium and block decoded. A forced maximum-likelihood, partial-response (PRML) detector is used to detect the N coded symbol bits from channel samples read from the magnetic medium. Block encoding provides greater coding gain for a detector when the characteristics of the block code are used to improve performance of the PRML detector that is used to detect the N coded symbol bits. Such PRML detector may employ a Viterbi algorithm (VA). State transition decisions over a block of N channel samples, or N clock cycles, form a path through a trellis of the VA, and the characteristics of the block code are used to force decisions for state transitions in the trellis. The PRML detector may force a decision for each state transition based on a priori knowledge of the known valid transitions defined by the rate (M/N) code symbol bits.
摘要:
Described embodiments receive a signal by a set of fixed taps and a set of floating taps of a receiver, each tap corresponding to a detected symbol. Each of the floating taps is stored in a corresponding shift register to account for process, operating voltage and temperature (PVT) variations of the receiver without calibration of delay elements. Multiplexing logic selects (i) corresponding floating taps for equalization by coupling selected floating taps to the outputs of the fixed taps, and (ii) different phases of each possible floating tap position. The multiplexing logic prunes and/or amalgamates the phases of each possible floating tap position and selects floating taps based on a magnitude of each phase. A combiner adjusts each output value of the fixed taps and the selected floating taps by a corresponding tap-weight, combines the adjusted values into an output signal and subtracts the output signal from the input signal.
摘要:
Methods and apparatus are provided for adaptively establishing the optimal sampling phase offset for a DFE operation. According to one aspect of the invention, one or more values in an amplitude domain are converted into a time domain, for example, using a phase detector, based on phase information to provide said sampling phase. The values in the amplitude domain optionally comprise one or more of detected DFE data, ŷ(n) and a sign of an error term for detected DFE data. The sampling phase can establish the phase of an independent clock or an offset to a second clock, such as a clock recovered from a received signal by a clock and data recovery (CDR) circuit.
摘要:
A read channel component of a magnetic recording system employs equalization of a signal received from the magnetic recording channel, the equalization being modified depending upon the presence or absence of DC shifts in the signal. Equalization corrects for DC shifts, if present, prior to detection and decoding of servo data, such as servo address mark (SAM) and Gray code data. In a first implementation, a DC shift detector detects the presence or absence of DC shifts and modifies equalization in a predetermined manner. In a second implementation, filtering is applied to the signal to enhance equalization in the presence of DC shift, and both filtered and unfiltered signals employed for detection of the servo data.