Abstract:
Disclosed are techniques for wireless communication. In some aspects, a base station (BS) may determine a first planned transmit beam configuration of the first BS. The BS may obtain a second planned transmit beam configuration of a second BS. The BS may determine that a first planned transmit beam of the first planned transmit beam configuration will interfere with a second planned transmit beam of the second planned transmit beam configuration. The BS may modify the first planned transmit beam, the second planned transmit beam, or both, based on the interference determination.
Abstract:
A method detecting allocation collisions from transmitting user equipments (UEs) in sidelink channel resources. The colliding allocations are detected and the quantity of allocation collisions is determined. A collision report is transmitted to other sidelink UEs within the coverage zone. The collision report or collision notification provides an indication of sidelink resources having identified colliding allocations. The identified allocation collisions may be pruned to remove potentially intentional collisions before collision report transmission.
Abstract:
A lens antenna array system is provided that includes a plurality of communication links. The lens antenna array system uses beam index modulation to select an active subset of communication links from the plurality of communication links. The selection of the active subset of the communication links constitutes the transmission of a digital word.
Abstract:
A phase tracking reference signal (PTRS) may be enhanced to carry data encoded with a relative low modulation and coding scheme (MCS). A receive device may receiving a data channel, the data channel including a transport block encoded using a first MCS. The receiving device may receiving a PTRS interleaved with the data channel. The PTRS is encoded with the second MCS that is lower than the first MCS. The receiving device may decode the PTRS to determine PTRS data. The receiving device may track phase noise using the PTRS data as a transmitted sequence of the PTRS. The receiving device may decode the transport block for the data channel based on the first MCS and the tracked phase noise.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a communication device may classify a plurality of packets of streaming video content based at least in part on one or more video characteristics; generate a plurality of code blocks based at least in part on classifying the plurality of packets, wherein each code block includes at least some subset of the plurality of packets having different effect on the quality of experience; and provide the plurality of code blocks for transmission. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a transmitter device may segment a plurality of bits of a communication into a first set of bits and a second set of bits; process the first set of bits using a first processing chain and the second set of bits using a second processing chain, wherein the first set of bits is mapped to most significant bits (MSBs) of one or more symbols of a composite constellation and the second set of bits is mapped to least significant bits (LSBs) of the one or more symbols of the composite constellation, and wherein the composite constellation is formed from a plurality of lower order constellations; modulate the first set of bits and the second set of bits to generate a set of modulated symbols; and transmit the set of modulated symbols. Numerous other aspects are provided.
Abstract:
Aspects of the present disclosure include methods, apparatuses, and computer readable media for monitoring a non-coherent downlink waveform during a discontinuous reception phase, receiving downlink data on the non-coherent downlink waveform, and decoding the downlink data without channel state information of the non-coherent downlink waveform.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless device may receive a sounding waveform via a reciprocal wireless channel. The wireless device may estimate one or more channel parameters associated with the reciprocal wireless channel based at least in part on the sounding waveform. The wireless device may generate a cryptographic key based at least in part on the one or more channel parameters associated with the reciprocal wireless channel. The wireless device may establish a secure communication session over the reciprocal wireless channel based at least in part on the cryptographic key. Numerous other aspects are provided.
Abstract:
The choice of a transmit (Tx)-Receive (Rx) beam pair out of many available beam pairs between a base station and a millimeter wave (mmW)-capable UE is directly related to the performance of transmission between the base station and the UE. A method, apparatus, and computer-readable medium at a transmitting user equipment (UE) capable of (mmW) communication are disclosed to determine a new serving Tx-Rx beam pair using an artificial neural network. The UE may predict a set of good Tx-Rx beam pairs using the artificial neural network, wherein the artificial neural network comprises an input layer, a middle layer, and an output layer. The UE may then determine the new serving Tx-Rx beam pair based on the set of good Tx-Rx beam pairs.
Abstract:
Systems and methods for communicating in a wireless network using a first radio access technology (RAT) and an assisting RAT are disclosed. A first connection can be established with an access point using the first RAT, and a second connection can be established with the access point using the assisting RAT. A timing of the first connection can be synchronized based at least in part on a timeline of the assisting RAT. Data can be communicated with the access point over at least the first connection based at least in part on synchronizing the timing, and control data can be communicated with the access point over at least the second connection, wherein the control data is related to the communicating data over at least the first connection.