摘要:
An all-digital frequency synthesizer architecture is built around a digitally controlled oscillator (DCO) that is tuned in response to a digital tuning word (OTW). In exemplary embodiments: (1) a gain characteristic (KDCO) of the digitally controlled oscillator can be determined by observing a digital control word before and after a known change (Δfmax) in the oscillating frequency; and (2) a portion (TUNE_TF) of the tuning word can be dithered (1202), and the resultant dithered portion (dkTF) can then be applied to a control input of switchable devices within the digitally controlled oscillator.
摘要:
An all-digital frequency synthesizer architecture is built around a digitally controlled oscillator (DCO) that is tuned in response to a digital tuning word (OTW). In exemplary embodiments: (1) a gain characteristic (KDCO) of the digitally controlled oscillator can be determined by observing a digital control word before and after a known change (Δfmax) in the oscillating frequency; and (2) a portion (TUNE_TF) of the tuning word can be dithered (1202), and the resultant dithered portion (dkTF) can then be applied to a control input of switchable devices within the digitally controlled oscillator.
摘要:
A novel method and apparatus for defining process variation in a digital RF processor (DRP). The invention is well suited for use in highly integrated system on a chip (SoC) radio solutions that incorporate a very large amount of digital logic circuitry. The method and apparatus provide direct measurement of fabrication process variation in circuits without requiring any additional test equipment by utilizing a time to digital converter (TDC) circuit already present in the chip. The TDC circuit relies on the time delay in an inverter chain to sample a high speed CKV clock using a slow FREF clock. Calculation of inverse time provides a direct correlation for fabrication process variation in each die.
摘要:
Efficient PAM transmit modulation is provided by a PAM modulator that includes an oscillator (404) that provides a clock signal, CKV, (408). The clock signal 408 and a delayed version (CKV_DLY) 420 of the clock signal are provided to a logic gate (414). The output of logic gate (414) is used as a power amplifier input signal (PA_IN) for radio frequency power amplifier (416). Depending on the relative time delay of the CKV clock signal (408) and the CKV_DLY delayed clock signal (420), the timing and duty cycle of the logic gate (414) duty cycle can be controlled. The duty cycle or pulse-width variation affects the turn-on time of the power amplifier (416); thereby establishing the RF output amplitude.
摘要:
A multi-tap, digital-pulse-driven mixer advantageously avoids local oscillator (11) leakage by shifting the local oscillator frequency (FLO) out of the received frequency band. Low noise figures are advantageously realized by the use of digital pulses (51, 52) as mixer drive signals (16).
摘要翻译:多抽头数字脉冲驱动混频器有利地通过将本地振荡器频率(F LO LO)从接收频带中移位来避免本地振荡器(11)的泄漏。 通过使用数字脉冲(51,52)作为混频器驱动信号(16),有利地实现了低噪声系数。
摘要:
A digital fractional phase detector is provided to realize a frequency synthesizer architecture that naturally combines transmitter modulation capability with a wideband all-digital PLL modulation scheme to maximize a digitally-intensive implementation by operating in a synchronous phase domain. Synchronous logic is provided across a digitally controlled VCO and is synchronous to the VCO output clock by implementing a timing adjustment in association with a reference calculation to allow a frequency control word to contain both channel information and transmit modulation information. The digital fractional phase detector is capable of accommodating a quantization scheme to measure fractional delay differences between the significant edge of the VCO output clock and a reference clock by using a time-to-digital converter to express the time difference as a digital word for use by the frequency synthesizer.
摘要:
Methods and apparatus to perform radio frequency (RF) analog-to-digital conversion are described. According to one example, a receiver includes an amplifier to amplify received analog RF signals and a mixer-free circuit for converting the received analog RF signals to digital signals.
摘要:
The present invention provides an RF transmission leakage mitigator for use with a full-duplex, wireless transceiver. In one embodiment, the RF transmission leakage mitigator includes an inversion generator configured to provide an RF transmission inversion signal of an interfering transceiver RF transmission to a receiving portion of the transceiver thereby creating a residual leakage signal. Additionally, the RF transmission leakage mitigator also includes a residual processor coupled to the inversion generator and configured to adjust the RF transmission inversion signal of the interfering transceiver RF transmission based on reducing the residual leakage signal to a specified level.
摘要:
The present invention provides an RF transmission leakage mitigator for use with a full-duplex, wireless transceiver. In one embodiment, the RF transmission leakage mitigator includes an inversion generator configured to provide an RF transmission inversion signal of an interfering transceiver RF transmission to a receiving portion of the transceiver thereby creating a residual leakage signal. Additionally, the RF transmission leakage mitigator also includes a residual processor coupled to the inversion generator and configured to adjust the RF transmission inversion signal of the interfering transceiver RF transmission based on reducing the residual leakage signal to a specified level.
摘要:
The present invention provides an offset balancer for use with a differential mixer employing a wireless reception and an offset quantifier configured to indicate an existing DC offset of the mixer corresponding to an existing second-order intercept point applicable to the wireless reception. In one embodiment, the offset balancer includes an offset adjuster coupled to the offset quantifier and configured to provide an offset adjustment to the existing DC offset based on increasing the existing second-order intercept point.