Abstract:
A measurement method includes: a step of acquiring first observation point information including a time point when each part of an m-th moving object passes a first observation point and a physical quantity which is a response to an action; a step of acquiring second observation point information including a time point when the each part passes a second observation point and a physical quantity which is a response to an action; a step of calculating a deflection waveform of a structure generated by the each part; a step of adding the deflection waveforms to calculate an m-th moving object deflection waveform; a step of calculating a displacement waveform at the third observation point; and a step of calculating first to M-th amplitude coefficients by assuming that a waveform obtained by multiplying an m-th amplitude coefficient by the m-th moving object deflection waveform is an m-th amplitude adjusted deflection waveform, and that a sum of first to M-th amplitude adjusted deflection waveforms is approximated to the displacement waveform.
Abstract:
A measurement method includes: a step of calculating, using first observation point information and based on a time from a leading time point when a leading part of a moving object passes a first observation point to a time point when each of a plurality of part passes the first observation point, and a time from the leading time point to a time point when a total sum of first physical quantities, which are responses to an action of each of the plurality of part on the first observation point, is distributed at a predetermined distribution ratio, a correction coefficient that corrects the first physical quantities; a step of calculating a deflection waveform of a structure generated by the plurality of parts based on the first observation point information, second observation point information, a predetermined coefficient, the correction coefficient, and an approximate expression of deflection of the structure; and a step of calculating a deflection waveform of the structure generated by the moving object by adding the deflection waveform of the structure.
Abstract:
A resampling circuit converts first data updated synchronously with a first clock signal into second data updated synchronously with a second clock signal asynchronous with the first clock signal and outputs the second data. The resampling circuit calculates and outputs the second data with a time resolution of a third clock signal having a higher frequency than the first clock signal and the second clock signal, based on the first data.
Abstract:
A processing apparatus includes a processing circuit that processes an output signal of a non-linear system that outputs the output signal including a vibration rectification error with respect to an input, and a memory that stores pre-determined vibration rectification coefficient information regarding the vibration rectification error. The processing circuit reduces the vibration rectification error included in the output signal based on the output signal and the vibration rectification coefficient information.
Abstract:
A sensor device includes a mounting member having fixation surfaces inside, and at least one electronic component directly or indirectly fixed to the fixation surfaces of the mounting member, and the mounting member constitutes a part of a casing for housing the electronic component. Further, the fixation surfaces are perpendicular to each other.
Abstract:
A measuring device includes a data acquisition unit that acquires measurement data, including width direction acceleration of a road surface on which a moving object moves, from an acceleration sensor provided on a structure having the road surface, and a moving object information acquisition unit that acquires information relating to the moving object moving on the road surface, on the basis of the width direction acceleration.
Abstract:
A measurement apparatus includes an acceleration sensor that detects values of acceleration in a plurality of directions; a calculation unit that calculates a predetermined physical quantity based on the values of the acceleration in the plurality of directions; an output unit that outputs data; and a selection unit that selects data to be output from the output unit, from among the values of the acceleration in the plurality of directions and the predetermined physical quantity.
Abstract:
A module includes a first rigid substrate including an analog circuit; a second rigid substrate including a digital circuit; a third rigid substrate including an angular velocity sensor; a first connecting portion that connects the first rigid substrate and the second rigid substrate so as to electrically connect the analog circuit and the digital circuit, and that has flexibility; and a second connecting portion that connects the first rigid substrate and the third rigid substrate so as to electrically connect the analog circuit and the angular velocity sensor, and that has flexibility.
Abstract:
A sensor unit is provided with a sensor device. The sensor device has a first electrode disposed on an outer surface. A board is provided with a first surface and a second surface in an obverse-reverse relationship with each other, and a side surface. A first conductive terminal is disposed along a contour of the first surface. The sensor device has the outer surface disposed along the side surface of the board, and has the first electrode connected to the first conductive terminal with a first conductive body, and a first projection length of the outer surface projecting on the first surface side is smaller than a second projection length of the outer surface projecting on the second surface side.