Abstract:
A device is equipped with at least one communication module. The communication module supports communication on the basis of body-coupled-communication signals. Further, the device is equipped with a metal frame. The metal frame forms a part of an outer surface of the device. The metal frame is operable to provide conductive coupling of the of body-coupled-communication signals to a body of a user of the device.
Abstract:
A wireless electronic device includes first and second conductive layers arranged in a face-to-face relationship. The first and second conductive layers are separated from one another by a first dielectric layer. The wireless electronic device includes a first radiating element and a second radiating element. The first conductive layer includes a slot. The second conductive layer includes a stripline. The second radiating element at least partially overlaps the slot. The wireless electronic device is configured to resonate at a resonant frequency corresponding to the first radiating element and/or the second radiating element when excited by a signal transmitted and/or received though the stripline.
Abstract:
A system including a wireless communication device and a peripheral device communicate with each other using radio frequency (RF) waves that are propagated using a user's own body as a transmission medium. The wireless communication device selectively controls the transmit output power of the peripheral device to cause the peripheral device to transmit data and information in a low-power transmission mode. This minimizes the amount of RF waves that are received at the wireless communication device as reflected RF waves, but helps to ensure that the RF waves that do reach the wireless communication device are transmitted as surface waves along the user's skin. Responsive to the receipt of the surface waves, and based on a validity of the information carried by those surface waves, the wireless communication device transitions from a locked state to an unlocked state.
Abstract:
Wearable wireless electronic devices are provided. A wearable wireless electronic device may be a wearable first wireless electronic device that may include a user-wearable transmitter. The user-wearable transmitter may include first and second electrodes that are spaced apart from each other. The first and second electrodes may include first and second curved portions, respectively, when the user-wearable transmitter is worn by a user. Moreover, the first and second electrodes may be configured to transmit communications through a human body of the user to a second wireless electronic device on or adjacent the human body of the user.
Abstract:
A mobile communications terminal with plural antennas for uplink communications with a network base station in a cell, uses an adaptive antenna selection algorithm to select antennas. A method of operating a mobile communications terminal. The cell operator or base station provides parameters and/or settings to the terminal to determine algorithm behavior in selecting antennas, for example, according to operative characteristics of signals in uplink communications in the network, operation of the terminal, and/or network conditions. A communications method includes sending from a base station one or more parameters and/or settings for a terminal to select which of plural antennas of the terminal to use transmitting signals to the base station. A base station transmits to terminals one or more such parameters and/or settings for use in the adaptive antenna selection algorithm to select antennas for transmitting signals to the base station.
Abstract:
A wireless electronic device includes a printed circuit board (PCB) with first, second, and third conductive layers separated from one another by dielectric layers. A stripline is included in the first conductive layer. Two highband dipole antenna strips are included in the second conductive layer and/or two lowband dipole antenna strips are included in the third conductive layer. The wireless electronic device may be configured to resonate at a lowband resonant frequency corresponding to the two lowband dipole antenna strips and resonate at a highband resonant frequency corresponding to the two highband dipole antenna strips when excited by a signal transmitted and/or received though the stripline.
Abstract:
A wireless electronic device includes a ground plane including a plurality of slots located along an edge of the ground plane. A dielectric layer is on the ground plane. A stripline on the dielectric layer is opposite the ground plane, positioned to overlap one of the plurality of slots. The stripline is further positioned to not overlap slots adjacent the one of the plurality of slots that the stripline overlaps. The wireless electronic device is configured to resonate at a resonant frequency when excited by a signal transmitted and/or received though the stripline.
Abstract:
Embodiments of the invention are directed to systems, methods and computer program products for minimizing data overhead in a cellular network. In one embodiment, a method includes determining, by a mobile device connected to the cellular network via a connection point, that the connection point has limited capacity; determining, by the mobile device, location information including location data indicating a current location of the mobile device; and determining, by the mobile device, an offload alternative connection point based on the determined location of the mobile device. In some cases, the method includes initiating disconnecting of the mobile device from a current connection point; and initiating connecting the mobile device to the offload alternative connection point.