Abstract:
A method of controlling an electric power steering system is provided. The method estimates steering rack force to be caused by a tire and a surface of a ground with which the tire is in contact in response to determining that one or more hand wheel torque sensors are not enabled. The method generates a steering assist torque command based on the estimated steering rack force. The method controls the electric power steering system using the steering assist torque command.
Abstract:
Technical features are described for a steering system to compute a state flag value that is indicative of a vehicle motion state, such as an understeer or an oversteer condition. The steering system further generates a reference torque signal based on the state flag value, and generates a motor-assist torque signal based on the reference torque signal. The state flag value indicates the vehicle motion state in both a dynamic-state or a steady-state. Further, the steering system generates the reference torque signal based on the state flag value by blending a first rack force generated based on a vehicle-speed signal and motor angle, and a second rack force generated based on a motor torque and an input torque provided to a handwheel of the steering system.
Abstract:
Technical solutions are described for a payload detection module that detects payload using one or more steering system control signals and generates an axle load factor. An example payload detection module includes a rack torque module to determine a rack torque, a reference model module to determine a reference rack torque for the steering system based on a load scale factor, and a load factor calculation module to compute the axle load factor based on a difference between the rack torque and the reference rack torque. Further, a blend factor module determines a load blend factor according to the axle load factor. Further yet, a signal combiner combines a blended nominal base assist and a blended highload base assist according to the load blend factor, the combination modifying a motor torque command, the motor torque command being sent to a motor to generate assist torque.
Abstract:
A system and a method of controlling a power steering system of a vehicle are provided. A control system includes a control module operable to determine a rack force of the vehicle based on at least one of a motor velocity, a driver torque and a motor torque, determine a plurality of modeled rack forces based on a roadwheel angle and a vehicle speed, compare the rack force to the plurality of modeled rack forces to generate a friction level included in a control signal, and send the control signal to the power steering system.
Abstract:
A system for determining driver torque includes a rack torque estimator module that determines an estimated rack torque value based on a motor angle, and a motor velocity. The system further includes a driver intent detection module that computes a disturbance torque scaling factor based on the estimated rack torque value. The system further includes a blend module that generates a motor torque assist command based on a scaled value of the estimated rack torque value using the disturbance torque scaling factor.
Abstract:
A control system for a power steering system includes a motor; a control module in communication with the motor, the control module providing a compensated velocity loop command to the motor. The control module includes a stability compensation filter module that receives a vehicle speed and a velocity loop command, the stability compensation filter applies a second order filter on the velocity loop command to generate the compensated velocity loop command used by the motor.
Abstract:
A method of controlling an electric power steering system of a vehicle is provided. The method determines that one or more hand wheel torque sensors of the vehicle are not enabled. The method generates an assist torque command by estimating a lateral acceleration of the vehicle based on a hand wheel angle and determining an amount of assist torque based on the estimated lateral acceleration. The method controls the electric power steering system using the generated assist torque command.
Abstract:
Disclosed is a steer by wire system that includes a controller operable to operate a roadwheel actuator such that a position command to the roadwheel actuator based on a handwheel orientation is a magnitude corresponding to a handwheel orientation offset value in an opposite direction to reduce a difference between the handwheel orientation offset value and a predetermined handwheel zero value.
Abstract:
Embodiments for assisting steering of a vehicle responsive to detecting an object in a proximity of a vehicle are described. Embodiments described include: receiving an image of a lane indicator corresponding to a lane of travel of the vehicle from an image capturing device; determining, based on the image, reference values corresponding to a position of the lane indicator relative to the vehicle; associating each of the reference values to values used to locate a point within a reference frame related to a direction the vehicle is traveling; receiving position information of an object in an environment external to the vehicle from a radar sensor; determining, based on the values and the position information, an assigned lane of the object; detecting an impending change of the lane of travel of the vehicle to the assigned lane of the object; generating a steering control value based on the impending change.
Abstract:
According to one or more embodiments, a method includes computing, by a steering system, a model rack force value based on a vehicle speed, steering angle, and a road-friction coefficient value. The method further includes determining, by the steering system, a difference between the model rack force value and a load rack force value. The method further includes updating, by the steering system, the road-friction coefficient value using the difference that is determined.