Abstract:
Technical features of a steering system include a control module that dynamically determines an operating mode based on a set of input signal values such as lateral acceleration signal values and corresponding handwheel position values. The control module dynamically determines and learns classification boundaries between multiple operating modes based the input signal values. The control module further calibrates the steering system according to operating mode that is determined using the classification boundaries.
Abstract:
A method of controlling a power steering system of a vehicle is provided. The method determines a yaw rate of the vehicle. The method generates a hand wheel angle signal that indicates a position of a hand wheel of the vehicle based on the yaw rate. The method controls the power steering system by using the hand wheel angle signal.
Abstract:
Technical features are described for a steering system to compute a state flag value that is indicative of a vehicle motion state, such as an understeer or an oversteer condition. The steering system further generates a reference torque signal based on the state flag value, and generates a motor-assist torque signal based on the reference torque signal. The state flag value indicates the vehicle motion state in both a dynamic-state or a steady-state. Further, the steering system generates the reference torque signal based on the state flag value by blending a first rack force generated based on a vehicle-speed signal and motor angle, and a second rack force generated based on a motor torque and an input torque provided to a handwheel of the steering system.
Abstract:
Technical features of a steering system include a control module that dynamically determines an operating mode based on a set of input signal values such as lateral acceleration signal values and corresponding handwheel position values. The control module dynamically determines and learns classification boundaries between multiple operating modes based the input signal values. The control module further calibrates the steering system according to operating mode that is determined using the classification boundaries.
Abstract:
A method of controlling a power steering system of a vehicle is provided. The method determines a yaw rate of the vehicle. The method generates a hand wheel angle signal that indicates a position of a hand wheel of the vehicle based on the yaw rate. The method controls the power steering system by using the hand wheel angle signal.
Abstract:
Technical features are described for a steering system to compute a state flag value that is indicative of a vehicle motion state, such as an understeer or an oversteer condition. The steering system further generates a reference torque signal based on the state flag value, and generates a motor-assist torque signal based on the reference torque signal. The state flag value indicates the vehicle motion state in both a dynamic-state or a steady-state. Further, the steering system generates the reference torque signal based on the state flag value by blending a first rack force generated based on a vehicle-speed signal and motor angle, and a second rack force generated based on a motor torque and an input torque provided to a handwheel of the steering system.