Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). An apparatus and a method for performing beamforming by using an antenna array in a wireless communication system are provided. The apparatus includes at least one antenna array comprising antenna elements, a control unit configured to determine a number of beams to be formed through the at least one antenna array, and a communication unit configured to adjust paths associated with the antenna elements in order to configure as many antenna subsets as the number of the beams, and to form at least one beam through at least one antenna subset configured from the at least one antenna array.
Abstract:
According to one embodiment of the present invention, provided is a method for setting a beam mode of a base station in a wireless communication system, comprising the steps of: selecting the beam mode for at least one terminal, which is serviced by the base station, on the basis of a channel state of a transmission beam or a reception beam of the base station; transmitting, to the terminal, a control message including selected beam mode information; and performing data communication with the terminal by using the transmission beam and the reception beam corresponding to the selected mode. In addition, according to one embodiment of the present invention, provided is a communication method of the terminal in the wireless communication system, comprising the steps of: receiving a beam mode setting message from the base station; setting either a beam fixation mode or a beam sweeping mode on the basis of the received beam mode setting message; and performing data communication with the base station on the basis of the set mode.
Abstract:
An electronic device is provided. The electronic device includes a housing including a microphone hole, a support member connected to the housing, wherein the support member includes an antenna structure facing at least a part of the housing and a microphone chamber configured to receive external sound of the electronic device from the microphone hole, and a microphone module connected to the support member and configured to receive external sound of the electronic device through the microphone hole and the microphone chamber.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for Internet of things (IoT) are disclosed. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a terminal for selecting a candidate beam in a wireless communication system is disclosed. The method includes receiving information on a reference signal from a base station, measuring a plurality beams based on the information on the reference signal, and determining at least one candidate beam among the plurality beams, the candidate beam comprising a beam quality above a threshold.
Abstract:
An electronic device attached to a vehicle and a control method therefor are disclosed. A control method for an electronic device attached to a vehicle according to the present invention comprises the steps of: acquiring driving information from a sensor included in a vehicle while the vehicle is running; determining a dangerous event having occurred while the vehicle is running, on the basis of the acquired driving information; and providing an image associated with the determined dangerous event, on the basis of information associated with the determined dangerous event from among the driving information. Accordingly, an electronic device attached to a vehicle provides an image relating to a situation in which a dangerous event is expected to occur, on the basis of detected driving information. Through the provided image, a vehicle driver can develop safe driving habits.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The disclosure provides a method by which a terminal, during uplink signal transmission: receives, from a base station, first information for indicating transmission of uplink control information and/or data in a specific subframe; receives, from the base station, second information for indicating transmission of the uplink control information and/or the data in the specific subframe; and determines the uplink control information and/or the data to be transmitted in the specific subframe on the basis of a capability of the terminal and transmits the determined uplink control information and/or data in the specific subframe.
Abstract:
Disclosed is an electronic apparatus providing a reply to a query of a user. The electronic apparatus includes a microphone, a camera, a memory configured to store at least one instruction, and at least one processor, and the processor is configured to execute the at least one instruction to control the electronic apparatus to: identify a region of interest corresponding to a co-reference in an image acquired through the camera based on a co-reference being included in the query, identify an object referred to by the co-reference among at least one object included in the identified region of interest based on a dialogue content that includes the query, and provide information on the identified object as the reply.
Abstract:
The disclosure relates to a communication technique, which is a convergence of IoT technology and 5G communication system for supporting higher data transmission rate beyond 4G system, and a system for same. The disclosure can be applied to smart services (e.g., smart homes, smart buildings, smart cities, smart cars or connected cars, health case, digital education, retail businesses, security- and safety-related services and the like) on the basis of 5G communication technology and IoT-related technology. Disclosed are a device and a method enabling explicit or implicit indication of beam selection in order to select a beam between a terminal and a base station in a wireless communication system using a beamforming technique, and enabling selection of a beam in correspondence with same.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transfer rate beyond a 4G communication system such as LTE. A method for controlling a cell change by a first base station according to an embodiment of the present invention comprises the steps of: generating resource information used for communication between a terminal and a second base station, when the terminal performs a cell change from a first cell corresponding to the first base station to a second cell corresponding to the second base station; and transmitting the resource information to the terminal so that the terminal and the second base station perform a random access procedure.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). In a feedback method of a terminal, receiving a first subframe from a base station, detecting, from the first subframe, downlink control information (DCI) including transmission timing information and frequency resource information for feedback, creating feedback information for data decoding of the first subframe to be transmitted in a second subframe determined based on the DCI, and transmitting the feedback information, based on a time resource indicated from the transmission timing information and a frequency resource indicated from the frequency resource information in the DCI.