Abstract:
Methods and apparatuses are provided in which a processor of a transceiver selects one of a real component of a complex signal and an imaginary component of the complex signal. The complex signal has IQ imbalance. An adaptive filter of the transceiver performs a real multiplication operation using an adaptive filter coefficient and the one of the real component and the imaginary component of the complex signal to generate a complex compensation signal. An adder of the transceiver sums the complex signal and the complex compensation signal to generate a compensated signal in which the IQ imbalance is corrected. The compensated signal is output for digital processing.
Abstract:
A communication system includes: an inter-device interface configured to receive received signal including communication content; a communication circuit, coupled to the inter-device interface, configured to: determine an in-phase signal-component and a quadrature signal-component based on the received signal, calculate an adjustment value including a first adjustment and a second adjustment based on the in-phase signal-component and the quadrature signal-component according to a maximum-likelihood mechanism, and adjust the received signal based on the adjustment value for reducing an in-phase/quadrature imbalance between the in-phase signal-component and the quadrature signal-component in processing the communication content.
Abstract:
A computing system includes: a communication unit configured to: identify a first synchronization symbol and a second synchronization symbol corresponding to a synchronization signal, generate the synchronization signal including the first synchronization symbol and the second synchronization symbol using a synchronization generator mechanism and a prefix generator mechanism; and an inter-device interface coupled to the communication unit, configured to communicate the synchronization signal for synchronizing a first device and a second device for communicating a serving content.
Abstract:
A method of optimizing at least one IQMC parameter value for an IQMC includes: generating a set of tested IQMC candidate parameter values by performing an iterative method including selecting a first IQMC candidate parameter value for the at least one parameter of the IQMC; determining, using the first IQMC candidate parameter value, a performance metric value that comprises at least one of (i) an image rejection ratio (IRR) value, (ii) a signal-to-interference-plus-noise ratio (SINR) value, or (iii) a signal-to-image ratio (SImR) value; and determining a second IQMC candidate parameter value that is an update to the first IQMC candidate parameter value. The method of optimizing at least one IQMC parameter value for an IQMC further includes determining an IQMC candidate parameter value of the set of tested IQMC candidate parameter values that optimizes the performance metric.
Abstract:
A method and a closed-loop antenna impedance tuning (CL-AIT) system are provided. An input reflection coefficient is determined. The input reflection coefficient and a threshold value are compared to determine whether the input reflection coefficient is greater than the threshold value. In response to determining that the input reflection coefficient is greater than the threshold value, an optimal tuner code is determined based on a tuner code search algorithm. The optimal tuner code is applied to configure the CL-AIT system.
Abstract:
A method of controlling power in a transmission system may include determining a first transmit power of a first transmit path, determining a second transmit power of a second transmit path, and controlling the first transmit path and the second transmit path based on a combination of the first transmit power and the second transmit power. The combination of the first transmit power and the second transmit power may include a sum of the first transmit power and the second transmit power. Controlling the first transmit path and the second transmit path may include determining a first effective power target for the first transmit path based on the first transmit power and the second transmit power, and determining a second effective power target for the second transmit path based on the first transmit power and the second transmit power.
Abstract:
A method for providing IQ mismatch (IQMM) compensation includes: estimating an overall frequency response of a compensation filter by stepping through a frequency range starting at an initial frequency and performing (1) through (3) at each step, a selected frequency at each step being a multiple of a subcarrier frequency of the initial frequency: (1) sending a single tone signal at the selected frequency, (2) determining a first response of a mismatched signal at the selected frequency and a second response of the mismatched signal at an image frequency of the selected frequency, and (3) estimating a frequency response of the compensation filter at the selected frequency based on the first response and the second response; generating time-domain filter taps based on the estimated overall frequency response of the compensation filter; determining a time delay based on the time-domain filter taps; and generating a compensated signal based on the time delay.
Abstract:
A method of gain step calibration by a user equipment (UE) includes selecting, a l th antenna path having a gain GT for a transmitter (Tx) of the UE and a corresponding m th antenna path having a gain GR for a receiver (Rx) of the UE; determining, a first loopback signal power for the l th antenna path having the gain GT for the transmitter (Tx) of the UE and the corresponding m th antenna path having the gain GR for the receiver (Rx) of the UE; determining, a second loopback signal power for the l th antenna path having a gain G′T for the transmitter (Tx) and the corresponding m th antenna path having the gain GR for the receiver (Rx); and determining, a transmitter gain step of the UE based on the first loopback signal power and the second loopback signal power.
Abstract:
A method and an apparatus are provided for calibrating digital pre-distortion (DPD) of an electronic device. A respective signal is received, by each of a first plurality of receiving antennas, from each of a second plurality of transmitting antennas. A DPD function is determined for each of the second plurality of transmitting antennas based on the received signals. A combined DPD function of the second plurality of transmitting antennas is determined based on the DPD functions and phase shifter settings associated with the second plurality of transmitting antennas.
Abstract:
A system, method, and electronic device for compensating in-phase (I) and quadrature (Q) mismatch (IQMM) are herein disclosed. The system includes an IQ mismatch compensator (IQMC) configured to compensate for IQMM between a time-domain I signal and a time-domain Q signal using filter weight coefficients, and output a compensated I signal and a compensated Q signal, a fast Fourier transformation (FFT) circuit configured to perform an FFT on the compensated I signal and the compensated Q signal to a frequency-domain compensated signal, and a coefficient updater configured to update the filter weight coefficients based on a frequency-domain observation of the frequency-domain compensated signal.