Abstract:
An all-solid secondary battery including: a cathode including a cathode active material layer; an anode including an anode active material layer; and a solid electrolyte layer including a sulfide solid electrolyte between the cathode active material layer and the anode active material layer, wherein an arithmetic mean roughness (Ra) of an interface between the cathode active material layer and the solid electrolyte layer is about 1 micrometer or less, and a relative density of the solid electrolyte layer is about 80% or more.
Abstract:
An all-solid lithium secondary battery, including: a cathode including a cathode active material layer, a solid electrolyte layer; and an anode including an anode active material layer, which forms an alloy or a compound with lithium, wherein the cathode, the solid electrolyte is between the cathode and the anode, wherein the anode active material layer includes about 33 weight percent to about 95 weight percent of an amorphous carbon with respect to the total mass of an anode active material in the anode active material layer, and a ratio of the initial charge capacity of the cathode active material layer to the initial charge capacity of the anode active material layer satisfies 0.01
Abstract:
An all-solid secondary battery, comprising: a cell comprising a positive electrode active material layer, a negative electrode active material comprising at least one of lithium metal and a lithium-containing alloy, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer, wherein a ratio of volume density to true density of the positive electrode active material layer is about 0.6 or greater, wherein a ratio of volume density to true density of the solid electrolyte layer is about 0.6 or greater, and wherein an average pressure applied to opposite sides of the solid electrolyte layer in a fully discharged state is greater than 0 megapascals and 7.5 megapascals or less.
Abstract:
A lithium secondary battery including: a positive electrode, a negative electrode, and a sulfide solid electrolyte disposed between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material particle and a coating film including an oxide including lithium (Li) and zirconium (Zr) on a surface of the positive active material particle.
Abstract:
A lithium ion secondary battery including: a cathode layer including at least a halogen-containing sulfide catholyte including a sulfide catholyte and a halide, and a conducting material; a solid electrolyte layer; and an anode layer, wherein the halogen-containing sulfide catholyte in the cathode layer can be reversibly oxidized and reduced.
Abstract:
An all-solid lithium ion secondary battery including a positive electrode including a positive active material particle and a solid electrolyte particle in contact with the positive active material particle, wherein the positive active material particle includes: a lithium cobalt oxide (LCO) particle; a first coating layer which includes nickel and is on at least a portion of a surface of the lithium cobalt oxide particle; and element M1, selected from B, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, In, Sn, Sb, La, Ce, Pr, Eu, Tb, Hf, Ta, and Pb.
Abstract:
A lithium secondary battery wherein the cathode layer comprises a cathode active material particle having a coating layer that is on at least a portion of a surface of the cathode active material particle, and a solid electrolyte particle which is in contact with the coating layer, wherein an average particle diameter of the cathode active material secondary particle is in a range of about 3 micrometers to about 10 micrometers, wherein the coating layer is amorphous and contains at least one element selected from metal elements not including nickel, and semi-metal elements, and wherein a mole ratio of the at least one element of the coating layer and all of the metal elements, not including lithium, or semi-metal elements in the cathode active material particle is in a range of about 0.1 mole percent to about 10 mole percent.
Abstract:
An all solid secondary battery including: an exterior body; a cathode including a cathode active material including a transition metal oxide, an anode; and a solid electrolyte layer disposed between the cathode and the anode, wherein the cathode, the anode, and the solid electrolyte layer are disposed in the exterior body, wherein the transition metal oxide is a lithium composite transition metal oxide that contains nickel and at least one metal element other than nickel that belongs to Group 2 to Group 13 of the periodic table, and wherein the total of partial pressures of carbon dioxide and oxygen in the exterior body is 200 pascals or less.
Abstract:
A polymeric compound including a cross-linked backbone which is a product of a reaction between a multifunctional acrylate compound and a metal porphyrin derivative, wherein the metal porphyrin derivative has a first axial position and a second axial position, and further includes a basic coordination ligand coordinated at the first axial position of the metal porphyrin derivative.
Abstract:
A solid-state battery including: a cathode, an anode, a solid-state electrolyte layer disposed between the cathode and the anode, wherein the solid-state electrolyte layer and at least the cathode of the cathode and the anode includes a sulfide solid-state electrolyte, the sulfide solid-state electrolyte includes an amorphous material and a crystalline material, a first proportion of the amorphous material in at least the cathode of the cathode and the anode is greater than a first proportion of the crystalline material in at least the cathode of the cathode and the anode, and a second proportion of the amorphous material in the solid-state electrolyte layer is less than a second proportion of the crystalline material in the solid-state electrolyte layer.