Abstract:
In a system supplying power from an AC power supply to a three-phase motor via a converter and an inverter, a leakage current reducing apparatus is connected to a connection line between the AC power supply and the converter. A common mode transformer detects, as common mode voltage, common mode current flowing from the AC power supply to the connection line. The common mode voltage is inputted to a voltage amplifier via a filter apparatus. Output voltage obtained by voltage amplification passes through a capacitor and then is applied as an AC component to a neutral point of capacitors connected in a Y-connection fashion, so as to have the same phase as that of the common mode voltage. Thus, current having the same phase as that of the common mode current is supplied via the capacitors to the converter through the connection line, thereby reducing the common mode current.
Abstract:
An inkjet recording apparatus includes a recording head configured to discharge ink, a first ink tank configured to store ink to be supplied to the recording head, a circulation path configured to circulate ink between the first ink tank and the recording head, a measurement unit configured to measure an ink temperature in the circulation path, a second ink tank configured to replenish ink to the circulation path, and a control unit configured to control replenishment of ink from the second ink tank to the circulation path based on the ink temperature measured by the measurement unit.
Abstract:
An inkjet printing apparatus, an inkjet printing system and an inkjet printing method are provided in order to correct a print density at a joint (overlapped portion) of nozzle arrays of a print head. The print density at the joint (overlapped portion) of the nozzle arrays is corrected based on a positional deviation between two adjacent nozzle arrays of the print head.
Abstract:
A printing apparatus conducts inspection associated with printing by changing a relative positional relationship between a line print head and a sheet feeding position for a sheet in a direction perpendicular to a direction in which the sheet is fed, forming an image on the sheet using the line print head a plurality of times, and reading the formed images using a reading unit.
Abstract:
A printing apparatus includes a full-line printhead in which a plurality of chips, on each of which a plurality of nozzle arrays are juxtaposed, are arranged in the nozzle arrayed direction, and which prints by the entire width of a printing medium using a plurality of nozzles arranged on the plurality of chips. The printing apparatus discharges ink from a predetermined number of successive nozzles on each nozzle array of each chip toward a printing medium during conveyance, thereby forming a plurality of first patterns corresponding to at least one nozzle array of each chip on the printing medium in the nozzle arrayed direction, reads the plurality of first patterns from the printing medium during conveyance using a sensor, calculates the shift amount of an ink attached position based on the plurality of read first patterns and corrects the attached position of ink based on the shift amount.
Abstract:
Three-phase windings 11-13 and 21-23 of a first common-mode transformer 1 and a second common-mode transformer 2 are connected in series through connecting lines 8r-8t, respectively. The windings 11-13 are connected to an unillustrated AC power supply by connecting lines 91r-91t. The windings 21-23 are connected to a three-phase motor by connecting lines 93r-93t and through a converter and an inverter which are unillustrated. A winding 14 for common-mode voltage detection detects high-frequency leakage currents flowing through the connecting lines 91r-91t as a common-mode voltage V1, and an output voltage V2 obtained by voltage amplification by a voltage amplifier 3 is applied to a winding 24 for common-mode voltage application in such a manner that the output voltage V2 works in generally the same direction as the common-mode voltage V1, thereby canceling out the high-frequency leakage currents through the windings 21-23. Since a voltage amplification method is used, it is possible to reduce the high-frequency leakage currents with a simpler configuration as compared to a conventional current amplification method.
Abstract:
When an image is recorded using a multichip recording head including a plurality of chips each having a plurality of nozzle arrays, a change in image density can occur due to a registration error between chips in an overlapping part where two chips are connected. To suppress the change in image density, input image data is distributed to two chips such that there are dots overlapping each other between the two chips in the overlapping part.
Abstract:
The present invention provides a recording apparatus including recording heads each including a plurality of nozzle arrays that are arranged so as to overlap, wherein the width with which the overlapping portions of the recording heads for colors that are simultaneously used with a relatively high frequency overlap in an intersecting direction that intersects an array direction of nozzles is smaller than the width with which the overlapping portions of the recording heads for colors that are simultaneously used with a relatively low frequency overlap in the intersecting direction.
Abstract:
A first humidified gas is supplied through a first supply port to a sheet. A second humidified gas is supplied to a space where nozzles of an inkjet recording head are exposed through a second supply port located at a position closer to the recording heads than the first supply port, to increase atmosphere humidity in the space. The sheet portion having a moisture content increased by the humidification in advance is advanced into the space having the increased atmosphere humidity, to record on the sheet using the inkjet recording head. An amount of humidification with the first humidified gas is set according to at least one recording condition.
Abstract:
A cut mark is recorded in an area between one image and the next image to be printed, and the recorded cut mark is to be detected. When the cut mark cannot be detected, a position of the cut mark is estimated based on information on an already detected cut mark and information on a length of the image printed after said already detected cut mark. A first cut position and a second cut position for cutting off the area are set based on the estimation.