Abstract:
An object is to provide a novel heterocyclic compound which can be used for a light-emitting element, as a host material of a light-emitting layer in which a light-emitting substance is dispersed. Other objects are to provide a light-emitting element having low driving voltage, a light-emitting element having high current efficiency, and a light-emitting element having a long lifetime. Provided are a light-emitting element including a compound in which a dibenzo[f,h]quinoxaline ring and a hole-transport skeleton are bonded through an arylene group, and a light-emitting device, an electronic device, and a lighting device each using this light-emitting element. The heterocyclic compound represented by General Formula (G1) below is provided.
Abstract:
A novel benzotriphenylene compound that can be suitably used as a host material in the case where a light-emitting substance is a fluorescent material. The benzotriphenylene compound is represented by General Formula (G1-1). In General Formula (G1-1), A represents a condensed ring. Each of R1 to R9 and R11 to R14 independently represents any of hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 13 carbon atoms. Ar represents an arylene group having 6 to 13 carbon atoms.
Abstract:
To provide a storage battery including a carbon-based material. To provide a graphene compound film having desired ion conductivity and mechanical strength while preventing direct contact between electrodes in a storage battery. To achieve long-term reliability. A lithium-ion storage battery includes a positive electrode, a negative electrode, an exterior body, and a separator between the positive electrode and the negative electrode. In the lithium-ion storage battery, one of the positive electrode and the negative electrode is wrapped in a first film, and the positive electrode, the negative electrode, and the separator are stored in the exterior body. The first film may include a first region in which the first film includes a first functional group. The first film may further include a second region in which the first film includes a second functional group different from the first functional group. The first film may be a graphene compound film.
Abstract:
Provided are a nonaqueous solvent containing a compound with high conductivity and low viscosity and a high-performance power storage device using the nonaqueous solvent. The power storage device includes an ionic liquid. The ionic liquid contains an anion and a cation having a five-membered heteroaromatic ring having one or more substituents. At least one of the substituents is a straight chain formed of four or more atoms and includes one or more of C, O, Si, N, S, and P.
Abstract:
A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more.
Abstract:
A novel organic compound is provided. That is, a novel organic compound that is effective in improving element characteristics and reliability is provided. The organic compound includes an anthracene skeleton and a carbazole skeleton, and is represented by the following general formula (G1).
(In the formula, Ar represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms, and when the arylene group has substituents, the substituents may be bonded to each other to form a ring. Furthermore, Cz represents a substituted or unsubstituted carbazole skeleton. Furthermore, each of R1 to R9 and R11 to R17 independently represents any of hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms. Furthermore, at least one of the following pairs may form a fused ring: R12 and R13; R14 and R15; R15 and R16; or R16 and R17.
Abstract:
According to one embodiment of the present invention, a secondary battery that can be used at a wide range of temperatures and is less likely to be influenced by an environmental temperature is provided. Furthermore, a secondary battery with high safety is provided. An electrolyte obtained by mixing an acyclic ester having high temperature characteristics with a fluorinated carbonic ester at 5 vol. % or higher, preferably 20 vol. % or higher, is used for the purpose of reducing interface resistance between an electrode and an electrolyte, whereby a secondary battery capable of operating at a wide range of temperatures, specifically, at temperatures higher than or equal to −40° C. and lower than or equal to 150° C., preferably higher than or equal to −40° C. and lower than or equal to 85° C. can be achieved.
Abstract:
Provided is a light-emitting element with high emission efficiency including a fluorescent material as a light-emitting substance. In a light-emitting element including a pair of electrodes and an EL layer between the pair of electrodes, a delayed fluorescence component due to triplet-triplet annihilation accounts for 20% or more of light emitted from the EL layer, and the light has at least one emission spectrum peak in the blue wavelength range. The EL layer includes an organic compound in which an energy difference between the lowest singlet excited energy level and the lowest triplet excited energy level is 0.5 eV or more. The EL layer includes a benzo[a]anthracene compound.
Abstract:
An object is to provide a nonaqueous solvent, a secondary battery, or a vehicle having a wide usable temperature range and high heat resistance. The nonaqueous solvent of the present invention contains an ionic liquid at greater than or equal to 50 vol % and less than or equal to 95 vol % and a fluorinated cyclic carbonate, and the ionic liquid contains an imidazolium cation. The nonaqueous solvent of the present invention has low viscosity at low temperatures and high heat resistance, thereby having a wide usable temperature range.
Abstract:
A negative electrode with little degradation is provided. Alternatively, a novel negative electrode is provided. A secondary battery includes a positive electrode and a negative electrode, and the negative electrode includes a solvent containing fluorine, a current collector, a negative electrode active material, and graphene. The negative electrode further includes a solid electrolyte material and the solid electrolyte material is an oxide. The negative electrode active material may contain fluorine. The secondary battery may include a plurality of electrolytes different from each other. The negative electrode active material is, for example, a material containing one or more elements selected from silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, and indium.