Abstract:
Devices and methods for connecting optical fibers are provided. In some embodiments, connectors and adaptors for two-fiber mechanical transfer type ferrules are disclosed. In some embodiments, MT connectors, such as simplex, duplex, and quad micro-MT adaptors are disclosed. In some embodiments, MT adaptors, such as simplex, duplex, and quad adaptors are disclosed. In some embodiments, optical fiber cables that modularly coupled with at least one optical fiber connector, adaptor, and other optical fiber cable the cable is configured to provide a remote release from an adaptor receptacle.
Abstract:
Devices and methods for connecting optical fibers are provided. In some embodiments, connectors and adaptors for two-fiber mechanical transfer type ferrules are disclosed. In some embodiments, MT connectors, such as simplex, duplex, and quad micro-MT adaptors are disclosed. In some embodiments, MT adaptors, such as simplex, duplex, and quad adaptors are disclosed. In some embodiments, optical fiber cables that modularly coupled with at least one optical fiber connector, adaptor, and other optical fiber cable using a remote release are disclosed.
Abstract:
An optical fiber connector assembly comprises at least one connector having a latching arm for coupling to an adapter, and a remote release tab having a protrusion configured to cooperate with the adapter to depress said latching arm when the remote release tab is pulled relative to the adapter. The optical fiber connector assembly may further be configured to have a deformable region at one end of the pull tab operatively connector to the latch arm assembly for releasing the connector from the adapter.
Abstract:
Various embodiments disclosed herein are directed to a Network system including: a connector comprising a housing comprising a groove running widthwise on a surface of the housing; and a push-pull tab comprising a complementary groove, wherein the push-pull tab is detachably connected to the housing; and a receiver device comprising one or more ports for receiving the connector, the one or more ports having an interchangeable anchor device including a first portion and a second portion; wherein the groove is configured to receive the first portion of the interchangeable anchor device when the connector is inserted into the receiving element, and wherein the complimentary groove is configured to receive the second portion of the interchangeable anchor device when the connector is inserted into the receiving element, the push-pull tab being configured to disengage the second portion of the interchangeable anchor device from the complementary groove when the push-pull tab is moved in a direction away from the connector, thereby disengaging the first portion of the interchangeable anchor device from the grove of the connector. Other aspects are described and claimed.
Abstract:
Optical fiber connectors for MT/MPO type ferrule assemblies are disclosed, having an overall connector length less than about 32 mm, for example, an overall length of about 18.5 mm for non-reinforced optical fiber cables, and an overall length of about 23.5 mm for reinforced optical fiber cables. In one embodiment, a connector comprises a ferrule assembly, and a housing coupled to the ferrule assembly and configured to couple to an adapter corresponding to the ferrule assembly. The connector further includes a lock coupled to the housing and configured to rotate so as to lock and unlock the housing from said adapter. An interface member coupled to the housing may include a stop configured to limit rotation of the lock. The interface member may include a reinforcement portion for reinforcing optical fiber cables.
Abstract:
Devices and methods for connecting optical fibers are provided. In some embodiments, connectors and adaptors containing mechanical-transfer type of ferrule are disclosed. In some embodiments, the mechanical-transfer type of ferrule is a mechanical-transfer dual-ferrule. In some embodiments, the connector is a mechanical-transfer dual-ferrule connector and the adaptor is a mechanical-transfer dual-ferrule adaptor. In some embodiments, an optical fiber cable that couples with at an optical fiber connector, adaptor, and other optical fiber cable using a remote release is disclosed.
Abstract:
A multi-fiber, fiber optic connector may include a reversible keying arrangement for determining the orientation for plugging the connector into an adapter to thereby allow for a change in polarity of the connection to be made on site. The connector housing may be configured to engage with a removable key that may be engaged with the housing in at least two different locations to provide the plug-in orientation, or the housing may have slidably displaceable keys movable between multiple positions on the housing.
Abstract:
A multi-fiber, fiber optic connector may include a reversible keying arrangement for determining the orientation for plugging the connector into an adapter to thereby allow for a change in polarity of the connection to be made on site. The connector housing may be configured to engage with a removable key that may be engaged with the housing in at least two different locations to provide the plug-in orientation, or the housing may have slidably displaceable keys movable between multiple positions on the housing.
Abstract:
Narrow width fiber optic connectors having spring loaded remote release mechanisms to facilitate access and usage of the connectors in high density arrays. A narrow pitch connector comprises a plurality of LC connectors wherein a pitch of said narrow pitch connector is less than about 5.25 mm, for example about 4.8 mm, a plurality of latching arms coupled to the plurality of LC connectors, a housing configured to hold the plurality of LC connectors, and a pull tab coupled to the plurality of latching arms and configured to remotely unlatch the narrow pitch connector, The pull tab may include a spring configured to provide a force such that the latching arms return to an undisplaced position. In another embodiment, a narrow width multi-fiber connector has a width less than or equal to about 9.6 mm.
Abstract:
A hybrid optical fiber adapter comprises a first adapter end configured to receive a first optical fiber connector, and a second adapter end configured to receive a second optical fiber connector of a different type from the first optical fiber connector. The hybrid adapter further comprises a spring configured to couple to the second adapter end such that the second optical fiber connector received into the second adapter end is disposed between the spring and the second adapter end, so as to allow floating of the second optical fiber connector. In one embodiment, the first optical fiber connector is an LC connector and the second optical fiber connector is a micro connector. The hybrid adapter may be coupled to a module such that the second adapter end protrudes into the module, requiring less space inside the module compared to conventional hybrid adapters, without sacrificing optical performance.