Abstract:
An LED (light-emitting diode) driver for a photoplethysmography system, including a switched-mode operational amplifier for driving a driver transistor with a source-drain path in series with the LED. In a first clock phase in which the LED is disconnected from the driver transistor, the amplifier is coupled in unity gain mode, and a sampling capacitor stores a voltage corresponding to the offset and flicker noise of the amplifier; the gate of the driver transistor is precharged to a reference voltage in this first clock phase. In a second clock phase, the sampled voltage at the capacitor is subtracted from the reference voltage applied to the amplifier input, so that the LED drive is adjusted according to the sampled noise. A signal from the transmitter channel is forwarded to a noise/ripple remover in the receiving channel, to remove transmitter noise from the received signal.
Abstract:
A high bandwidth Hall sensor includes, for example, a Hall element for generating a first polarity Hall-signal output current. An amplifier receives, at a first input, the first polarity Hall-signal output current and outputs a feedback current of a second polarity opposite the first polarity in response. The feedback current is coupled to the first input, and the feedback current suppresses an instantaneous voltage generated by the first polarity first Hall element output current at the first input. In an embodiment, the feedback current suppresses the instantaneous voltage generated by first polarity Hall element output current such that the effects of the Hall element source impedance are reduced.
Abstract:
Methods and apparatus for magnetic sensors and integrated calibration. In an example arrangement, a system includes a magnetic sensor configured to output a signal corresponding to magnetic fields; a calibration trace disposed proximal to the magnetic sensor; a controlled current source coupled to the calibration trace and configured to output a current resulting in a magnetic field output from the calibration trace; and a comparator coupled to the output signal from the magnetic sensor and to an expected signal. In the example arrangement, the comparator outputs a signal indicating whether the output signal from the magnetic sensor corresponds to the expected signal. Methods are also disclosed.
Abstract:
Reduced noise and power with rapid settling time and increased performance in multi-modal analog multiplexed data acquisition systems. An example apparatus arrangement includes a circuit input configured to receive a plurality of analog input signals; an analog to digital converter circuit configured to output a digital representation of an analog voltage; a selection circuit configured to select one of the analog input signals received at the circuit input; a buffer coupled to receive the selected one of the analog input signals; a filter coupled to the buffer and configured to perform a high bandwidth sample operation and a low bandwidth sample operation and having a filter output, responsive to a control signal; and a sampling capacitor coupled to the filter to sample the filter output, and having an output coupled to the analog to digital converter. Methods and additional apparatus arrangements are disclosed.
Abstract:
Described examples include graphene Hall sensors, magnetic sensor systems and methods for sensing a magnetic field using an adjustable gate voltage to adapt the Hall sensor magnetic field sensitivity according to a control input for environmental or process compensation and/or real-time adaptation for balancing power consumption and minimum detectable field performance. The graphene Hall sensor gate voltage can be modulated and the sensor output signal can be demodulated to combat flicker or other low frequency noise. Also, graphene Hall sensors can be provided with capacitive coupled contacts for reliable low impedance AC coupling to instrumentation amplifiers or other circuits using integral capacitance.
Abstract:
The circuitry of an optical receiver reduces the ambient DC component and the pleth DC component to leave a pleth signal with substantially only a pleth AC component. The circuitry also provides gain control and can provide transmit power control to change the range of the pleth AC component to occupy a desired input range of an analog-to-digital converter.
Abstract:
Apparatus and methods disclosed herein implement a MOS resistor using the current channel of a MOS transistor. The MOS resistance R(DS) is dependent upon MOS transistor geometry and nominal gate voltage. MOS resistor terminal-to-gate voltages are averaged and applied to the MOS transistor gate such as to maintain the MOS resistor terminal voltage to current ratio, resulting in a substantially constant R(DS). R(DS) is also compensated for temperature and process variations by adjusting gate voltages via negative feedback methods.
Abstract:
A data storage system for detecting a location of a head relative to a magnetic media is described. This system comprises arms, a preamplifier circuit coupled to the arms for controlling the arms, a proximity sensing system positioned within the preamplifier circuit, the proximity sensing system comprising: an input stage for transmitting an input sense signal; a programmable gain stage coupled to receive the input sense signal and operative for transmitting a gain signal in response to receiving the input sense signal; a multiplexer coupled to receive the gain signal and at least one control signal, the multiplexer operative for transmitting a multiplexed signal; a detector coupled to receive the multiplexed signal and a second control signal, the detector operative for transmitting an output signal; wherein an amplitude associated with the output signal enables detecting the location of the head.