Abstract:
An image processing system includes a processor and optical flow determination logic. The optical flow determination logic is to quantify relative motion of a feature present in a first frame of video and a second frame of video with respect to the two frames of video. The optical flow determination logic configures the processor to convert each of the frames of video into a hierarchical image pyramid. The image pyramid comprises a plurality of image levels. Image resolution is reduced at each higher one of the image levels. For each image level and for each pixel in the first frame, the processor is configured to establish an initial estimate of a location of the pixel in the second frame and to apply a plurality of sequential searches, starting from the initial estimate, that establish refined estimates of the location of the pixel in the second frame.
Abstract:
The disclosure provides a sample adaptive offset (SAO) encoder. The SAO encoder includes a statistics collection (SC) block and a rate distortion optimization (RDO) block coupled to the SC block. The SC block receives a set of deblocked pixels and a set of original pixels. The SC block categorizes each deblocked pixel of the set of deblocked pixels in at least one of a plurality of band and edge categories. The SC block estimates an error in each category as difference between a deblocked pixel of the set of deblocked pixels and corresponding original pixel of the set of original pixels. The RDO block determines a set of candidate offsets associated with each category and selects a candidate offset with a minimum RD cost. The minimum RD cost is used by a SAO type block and a decision block to generate final offsets for the SAO encoder.
Abstract:
Several systems and methods for filtering noise from a picture in a picture sequence associated with video data are disclosed. In an embodiment, the method includes accessing a plurality of pixel blocks associated with the picture and filtering noise from at least one pixel block from among the plurality of pixel blocks. The filtering of noise from a pixel block from among the at least one pixel block includes identifying pixel blocks corresponding to the pixel block in one or more reference pictures associated with the picture sequence. Each identified pixel block is associated with a cost value. One or more pixel blocks are selected from among the identified pixel blocks based on associated cost values. Weights are assigned to the selected one or more pixel blocks and set of filtered pixels for the pixel block is generated based on the weights.
Abstract:
Several systems and methods for filtering noise from a picture in a picture sequence associated with video data are disclosed. In an embodiment, the method includes accessing a plurality of pixel blocks associated with the picture and filtering noise from at least one pixel block from among the plurality of pixel blocks. The filtering of noise from a pixel block from among the at least one pixel block includes identifying pixel blocks corresponding to the pixel block in one or more reference pictures associated with the picture sequence. Each identified pixel block is associated with a cost value. One or more pixel blocks are selected from among the identified pixel blocks based on associated cost values. Weights are assigned to the selected one or more pixel blocks and set of filtered pixels for the pixel block is generated based on the weights.