Abstract:
A sensor-equipped bearing for a wheel rotatably supporting the wheel relative to a vehicle body includes an outer member (1) provided with a double-row raceway surface (3) on an inner periphery thereof, an inner member (2) provided with raceway surfaces (4) opposing to the raceway surfaces (3) of the outer member (1), one of the outer and inner members serving as a stationary member, double-row rolling elements (5) interposed between the outer and inner raceway surfaces, a sensor fitting member (22) fixed to a peripheral surface of the stationary member, and a plurality of strain sensors (23) attached to the sensor fitting member (22) for measuring a strain thereof.
Abstract:
In a wheel support bearing assembly having rows of rolling elements interposed between an outer member and an inner member, spacers are interposed between vehicle body fitting holes in the outer member, which is a stationary member, and a knuckle. A sensor unit including a sensor mounting member and a strain sensor is fitted to the outer member. The sensor mounting member has at least two contact fixing portions fixed to the outer member and, also, has at least one recess between the neighboring contact fixing portions, the strain sensor being disposed in this recess.
Abstract:
A magnetic bearing device includes a main shaft (13), a flange shaped thrust plate (13a) coaxially mounted on the main shaft so as to extend perpendicular to the main shaft and made of a ferromagnetic material, a rolling bearing unit for supporting a radial load and a magnetic bearing unit for supporting one or both of an axial load and a bearing preload, an electromagnet (17) fitted to a spindle housing (14) so as to confront the thrust plate, without contact, a sensor (18) for detecting an axial force acting on the main shaft, and a controller (19) for controlling the electromagnet in response to an output from the sensor. In this magnetic bearing device, the stiffness of a composite spring formed by the rolling bearing unit and a support system for the rolling bearing unit is so chosen as to be higher than the negative stiffness of the electromagnet.
Abstract:
A sensor-incorporated wheel support bearing assembly, enabling a load sensor to be compactly installed on the vehicle and capable of detecting a load on a wheel with good sensitivity includes a ring member, affixed to a stationary member, which has at an intermediate portion thereof a first non-contact ring portion not in contact with the stationary member, at one end a first contact ring portion in contact with the stationary member, and at the other end the following (A) or (B): (A) a second non-contact ring portion having a wall thickness greater than that of the first non-contact ring portion; (B) a second contact ring portion in contact with the stationary member. A strain sensor is fitted to; in (A), the first non-contact ring portion, and in (B), the first non-contact ring portion or first contact ring portion, which has smaller wall thickness.
Abstract:
To provide a sensor incorporated wheel support bearing assembly, in which a load sensor can be compactly installed in an automotive vehicle, the load acting on the vehicle wheel can be detected with high sensitivity and the manufacturing cost can be reduced, the bearing assembly having a plurality of rows of rolling elements interposed between an outer member and an inner member includes a sensor unit fitted to one of the outer member and the inner member, which serves as a stationary member. The sensor unit includes a sensor mounting member and a strain sensor fitted thereto. The sensor mounting member has two contact fixing portions fixed to the outer member and a first contact fixing portion is fixed to a flange surface of the outer member and a second contact fixing portion is fixed to a peripheral surface of the outer member.
Abstract:
There is provided a sensor equipped wheel support bearing assembly including an outer member having an inner periphery formed with a plurality of rolling surfaces defined therein, an inner member having an outer periphery formed with rolling surfaces opposed to those rolling surfaces and a plurality of rows of rolling elements interposed between those rolling surfaces. One of the outer and inner members serving as a stationary member is provided with a strain amplifying mechanism for amplifying a strain in the stationary member, which occurs when the rolling elements pass by. A strain sensor element is provided for detecting the strain amplified by the strain amplifying mechanism. A calculator is provided for calculating from an output of the strain sensor element, the load acting on the bearing assembly or the load acting between the vehicle wheel and the road surface.
Abstract:
A drive device for driving a linear body having flexibility includes a first roller, a motor for feeding the linear body in a direction of extension of the linear body by directly transmitting rotation force to the first roller to rotate the first roller, a motor drive portion for driving the motor by supplying a current to the motor, and a control unit for calculating force applied to the linear body in the direction of extension based on the current supplied to the motor.
Abstract:
A blood pump apparatus comprises a housing, a centrifugal pump section including an impeller and rotating inside the housing to feed a fluid by a centrifugal force, an impeller rotational torque generation section for attracting thereto said impeller and rotating said impeller; and a plurality of grooves for hydrodynamic bearing provided on an inner surface of said housing at a side of said impeller rotational torque generation section, each of the grooves for hydrodynamic bearing having a first side and a second side both extending from a periphery of said portion in which a groove for hydrodynamic bearing is formed toward a central side thereof and opposed to each other, a third side connecting one end of said first side and one end of said second side to each other, and a fourth side connecting said other end of said first side and said other end of said second side to each other; said first side and said second side are formed as a circular arc respectively in such a way that centers of said circular arcs are different from each other.
Abstract:
In a wheel support bearing assembly including a plurality of rolling elements (5) interposed between an outer member (1) and an inner member (2), a sensor unit (21) is fitted to one of the outer member and the inner member, which serves as a stationary member. The sensor unit includes a sensor mounting member (22) and a strain sensor (23) fitted to the sensor mounting member. The sensor mounting member has a plurality of contact fixing portions (22a, 22b) that are fixed to at least two locations spaced a distant from each other in a direction circumferentially of the outer member. A cutout (24) is provided in the outer member at respective positions corresponding to the neighboring contact fixing portions of the sensor mounting member, so as to extend in an axial direction. The strain sensor is arranged intermediate between the neighboring contact fixing portions.
Abstract:
In a wheel support bearing assembly including double row rolling elements (3) between an outer member (1) and an inner member (2), a sensor unit (21) is fitted to one of the outer and inner members (1) and (2), which serves as a stationary member. The sensor unit (21) is made up of a sensor mounting member (22) and at least one or more strain sensor (23) fitted to the sensor mounting member (22). A sensor signal processing circuit (60) for processing an output signal from the strain sensor (23) is provided in the sensor mounting member (22).