摘要:
An activated cathode comprising an electrically conductive substrate, an interlayer comprising a nickel oxide formed on the surface of the electrically conductive substrate, and a catalyst layer containing at least one lanthanum component selected from oxides and hydroxides of lanthanum metals and at least one platinum component selected from platinum metals and silver and oxides and hydroxides thereof formed on the interlayer. A process for the preparation of an activated cathode is also disclosed which comprises forming an interlayer comprising a nickel oxide on the surface of an electrically conductive substrate, and then forming a catalyst layer containing at least one lanthanum component selected from oxides and hydroxides of lanthanum metals and at least one platinum. component selected from platinum metals and silver and oxides and hydroxides thereof on the surface of the interlayer.
摘要:
An apparatus for producing electrolytic water in which the yielded electrolytic water does not suffer quality deterioration caused by chemical species, e.g., hydrogen ions, moving to the counter-electrode chamber. A diaphragm 4 of a two-chamber type electrolytic cell comprises two or more ion-exchange membranes 3, and a noble-metal layer 2 or another layer may be formed in the diaphragm. Use of the ion-exchange membranes produces an enhanced physical screening effect, while formation of the noble-metal layer produces catalytic effect to decompose chemical species. Both the ion-exchange membranes and the anode-metal layer are effective in diminishing the movement of chemical species to the counter-electrode chamber.
摘要:
The present invention provides a cathode for hydrogen generation comprising a cathode substrate having provided thereon a catalytic layer, wherein the catalytic layer contains at least three components of platinum, cerium and lanthanum in amounts of 50 to 98 mol %, 1 to 49 mol % and 1 to 49 mol %, respectively, in the form of metal, metal oxide or metal hydroxide.
摘要:
A cathode assembly comprising a cathode, an ion-exchange membrane, and an electroconductive porous member permeable to gas and liquid sandwiched between the cathode and the membrane. The porous member may have, deposited on a part thereof, a catalyst active in hydrogen generation. The porous member preferably is in the form of a plate, sheet, fibers, web, paper, net, or sinter of any of these, and comprises at least a carbonaceous material and has a thickness of from 0.05 to 5 mm and a porosity of from 10 to 95%. Also disclosed is a method of reactivating a cathode assembly, which comprises conducting electrolysis using the cathode assembly until its activity decreases, and then depositing a catalyst active in hydrogen generation on the porous member.
摘要:
The present invention aims to provide an activated cathode enabling a long-time stable operation with hydrogen overvoltage maintained at a low value, keeping a high remaining rate of the catalyst element after a cease of operation for a short-circuiting and after an electrolysis operation at a high current density, restricting catalyst loss to a little, and having a strong resistance to contamination caused by electrolyte impurity elements.The present invention relates to a cathode for hydrogen evolution with a catalyst layer formed on the cathode substrate, having, at least, three elements comprising platinum, cerium and palladium, as essential element, in a state of metal, metal oxide, or hydroxide, contained, where the mole fraction of respective element being x, y, and z, within a range of 5 mol %≦x≦90 mol %, 5 mol %≦y≦55 mol %, 5 mol %≦z≦65 mol %.
摘要:
The present invention provides an electrode for generation of hydrogen comprising: a conductive substrate; a catalytic layer formed on the conductive substrate and containing at least one platinum group metal selected from the group consisting of Pt, Ir, Ru, Pd and Rh; and a hydrogen adsorption layer formed on the catalytic layer. The present invention also provides an electrode for generation of hydrogen comprising: a conductive substrate, a catalytic layer formed on the conductive substrate and containing: at least one platinum group metal selected from the group consisting of Pt, Ir, Ru, Pd and Rh and/or at least one oxide of said platinum group metals; and at least one metal selected from the group consisting of lanthanum series metals, valve metals, iron series metals and silver and/or at least one oxide of said metals; and a hydrogen adsorption layer formed on the catalytic layer.
摘要:
The present invention provides an oxygen-reduction gas diffusion cathode having: a porous conductive substrate; diamond particle having a hydrophobic surface; and catalyst particle, the diamond particle and the catalyst particle being disposed on the porous conductive substrate, and a method of sodium chloride electrolysis using the cathode.
摘要:
Highly active hydrogen evolving cathode using a platinum group metal catalyst in an amount smaller than that used in the conventional hydrogen evolving cathode. The hydrogen evolving cathode includes a conductive substrate, and a catalyst layer comprising at least one selected from the group consisting of silver and a silver oxide compound, and at least one selected from the group consisting of a platinum group metal, a platinum group metal oxide and a platinum group metal hydroxide, formed on a surface of the conductive substrate.
摘要:
A diamond electrode having a prolonged life by combining a conventional diamond electrode having a relatively short life with other components is provided. A diamond electrode for electrolysis includes an electrode substrate, at least the surface of which comprises Magneli phase titanium oxide, and conductive diamond supported as an electrode catalyst on a surface of the electrode. The electrode catalyst may contain a titanium oxide powder. Magneli phase titanium oxide improves conductivity without forming a stable oxide layer on the substrate surface.
摘要:
The present invention provides an oxygen-reduction gas diffusion cathode having: a porous conductive substrate; diamond particle having a hydrophobic surface; and catalyst particle, the diamond particle and the catalyst particle being disposed on the porous conductive substrate, and a method of sodium chloride electrolysis using the cathode.