摘要:
An apparatus for producing electrolytic water in which the yielded electrolytic water does not suffer quality deterioration caused by chemical species, e.g., hydrogen ions, moving to the counter-electrode chamber. A diaphragm 4 of a two-chamber type electrolytic cell comprises two or more ion-exchange membranes 3, and a noble-metal layer 2 or another layer may be formed in the diaphragm. Use of the ion-exchange membranes produces an enhanced physical screening effect, while formation of the noble-metal layer produces catalytic effect to decompose chemical species. Both the ion-exchange membranes and the anode-metal layer are effective in diminishing the movement of chemical species to the counter-electrode chamber.
摘要:
A method of water electrolysis for producing acidic water and alkaline water is disclosed, which is effective in preventing the dissolution of electrode material in the acidic water, etc. attributable to a reverse current flowing in a power supply cutoff state and also in preventing electrode deactivation caused by the electrode material dissolution. This enables the electrolytic cell to be operated stably over a long period of time to yield high-purity acidic and alkaline waters. An electrolytic cell 1 partitioned into an anode chamber and a cathode chamber with a cation-exchange membrane 2 as a solid electrolyte is used to electrolytically produce acidic water and alkaline water. A voltage of 1.2 V or higher and/or a current of 20 mA/dm.sup.2 or higher is applied between the anode 7 and the cathode 8 when the electrolytic cell is in a power supply cutoff state.
摘要:
An electrolytic cell for producing acidic water and alkaline water is disclosed. High-purity acidic water and high-purity alkaline water can be produced in a well balanced proportion from ultrapure water which is supplied in the minimum amount necessary for producing the desired acidic and alkaline waters using the minimum amount of electricity. The electrolytic cell includes an electrolytic acidic-water production unit 3 comprising an anode chamber 6 and an auxiliary cathode chamber 7 separated therefrom by a first ion-exchange membrane 5, and an electrolytic alkaline-water production unit 4 comprising a cathode chamber 10 and an auxiliary anode chamber 9 separated therefrom by a second ion-exchange membrane 8. Separately controllable power supplies are also provided for supplying power to each of the two units. The supply amount of pure water and the amount of electricity used can be fixed according to the desired amounts of acidic and alkaline waters. Thus, wasteful use of ultrapure water and electric power can be avoided.
摘要:
This invention provides a cleaning method of silicon wafer for obtaining a silicon wafer in which micro roughness thereof under spatial frequency of 20/μm is 0.3 to 1.5 nm3 in terms of power spectrum density, by passing a process of oxidizing the silicon wafer with ozonized water and a process of cleaning said oxidized silicon wafer with hydrofluoric acid. Consequently, it is possible to remove surface adhering pollutant such as particles and metallic foreign matter with the surface structure of silicon wafer flattened up to atomic level by annealing maintained.
摘要:
An electrode substrate is brush cleaned with a hydrogen gas dissolved water, which has an oxidation-reduction potential of −860 mV to −400 mV and a pH of 8 to 12, before applying an alignment layer material on the electrode substrate. Thus, it is possible to decrease the manufacturing costs without decreasing the detergency.
摘要:
An electrode substrate is brush cleaned with a hydrogen gas dissolved water, which has an oxidation-reduction potential of −860 mV to −400 mV and a pH of 8 to 12, before applying an alignment layer material on the electrode substrate. Thus, it is possible to decrease the manufacturing costs without decreasing the detergency.
摘要:
Provided is a cleaning method for effectively removing particles on the surface of an object to be cleaned. This cleaning method includes dissolving oxygen into deaerated pure water to prepare a cleaning fluid, and cleaning an object to be cleaned by bringing the object into contact with the cleaning fluid to which ultrasonic vibration is being applied.
摘要:
An apparatus for electrolyzing sulfuric acid, the apparatus comprising an electrolytic cell comprising a cathode chamber having a cathode and an anode chamber having an anode, the cathode chamber and the anode chamber being separated by a diaphragm, a sulfuric acid tank configured to store the sulfuric acid, a supply pipe connecting the sulfuric acid tank to an inlet port of the anode chamber, a connection pipe connecting an outlet port of the cathode chamber to the inlet port of the anode chamber, a first supply pump provided on the supply pipe and configured to supply the sulfuric acid from the sulfuric acid tank to the cathode chamber through the supply pipe, and a drain pipe connected to an outlet port of the anode chamber and configured to supply to a solution tank a solution containing an oxidizing agent generated by electrolysis in the anode chamber.
摘要:
A processing apparatus includes: a tank configured to store water; vapor generating unit configured to turn the water supplied from the tank into vapor; a processing chamber in which vapor supplied from the vapor generating unit is used to remove residues from a workpiece; cooling unit; and filtering unit. The cooling unit cools waste liquid ejected from the processing chamber. The filtering unit is provided between the cooling unit and the tank, and the filtering unit filters the waste liquid cooled in the cooling unit. A processing method includes: supplying vapor into a processing chamber; removing residues from a workpiece using the vapor; cooling waste liquid containing the removed residues to precipitate the residues as solids; and filtering the waste liquid containing the precipitates.
摘要:
According to one embodiment, a cleaning method is disclosed. The method can produce an oxidizing solution including an oxidizing substance by electrolyzing a dilute sulfuric acid solution. In addition, the method can supply a highly concentrated inorganic acid solution individually, sequentially, or substantially simultaneously with the oxidizing solution to a surface of an object to be cleaned.