Abstract:
A system and method for autonomously scanning a sensor panel device is disclosed. A sensor panel processor can be disabled after a first predetermined amount of time has elapsed without the sensor panel device sensing any events. One or more system clocks can also be disabled to conserve power. While the processor and one or more system clocks are disabled, the sensor panel device can periodically autonomously scan the sensor panel for touch activity. If one or more results from the autonomous scans exceed a threshold, the sensor panel device re-enables the processor and one or more clocks to actively scan the sensor panel. If the threshold is not exceeded, the sensor panel device continues to periodically autonomously scan the sensor panel without intervention from the processor. The sensor panel device can periodically perform calibration functions to account for any drift that may be present in the system.
Abstract:
Disclosed is an electronic device featuring a multi buffer scheme for processing incoming signals. For example, two buffers can be used. A processor can read and process stored signals from a first buffer while an incoming data module can concurrently store signals in a second buffer. Once, the processor is done, it can move on to the second buffer and process signals stored therein while the incoming data module stores signals in the first buffer. Also provided is a flagging scheme for allowing the processor and the incoming data module to control their respective access to the various buffers, so that only one of them accesses a single buffer at any time.
Abstract:
Power management for a touch controller is disclosed. The touch controller can include a transmit section for transmitting stimulation signals to an associated touch sensor panel to drive the panel, where the touch controller can selectively adjust the transmit section to reduce power during the transmission. The touch controller can also include a receive section for receiving touch signals resulting from the driving of the panel, where the touch controller can selectively adjust the receive section to reduce power during the receipt of the touch signals. The touch controller can also include a demodulation section for demodulating the received touch signals to obtain touch event results, where the touch controller can selectively adjust the demodulation section to reduce power during the demodulation of the touch signals. The touch controller can also selectively reduce power below present low levels during idle periods. The touch controller can be incorporated into a touch sensitive device.
Abstract:
A computer system having two or more controllers operating in a Master/Slave configuration is disclosed. In one embodiment, the computer system includes: a sensor panel having a first portion for generating a first set of sense signals indicative of a touch or no-touch condition on the first portion, and a second portion for generating a second set of sense signals indicative of a touch or no-touch condition on the second portion; a first device for receiving and processing the first set of output signals from the first portion of the panel; and a second device for receiving and processing the second set of output signals from the second portion of the panel, wherein the first and second devices operate cooperatively in a Master/Slave configuration.
Abstract:
A device that can autonomously scan a sensor panel is disclosed. Autonomous scanning can be performed by implementing channel scan logic. In one embodiment, channel scan logic carries out many of the functions that a processor would normally undertake, including generating timing sequences and obtaining result data; comparing scan result data against a threshold value (e.g., in an auto-scan mode); generating row count; selecting one or more scanning frequency bands; power management control; and performing an auto-scan routine in a low power mode.
Abstract:
A multi-stimulus controller for a multi-touch sensor is formed on a single integrated circuit (single-chip). The multi-stimulus controller includes a transmit oscillator, a transmit signal section that generates a plurality of drive signals based on a frequency of the transmit oscillator, a plurality of transmit channels that transmit the drive signals simultaneously to drive the multi-touch sensor, a receive channel that receives a sense signal resulting from the driving of the multi-touch sensor, a receive oscillator, and a demodulation section that demodulates the received sense signal based on a frequency of the receive oscillator to obtain sensing results, the demodulation section including a demodulator and a vector operator.
Abstract:
This relates to interface circuits for synchronous protocols which do not rely on a dedicated high frequency clock signal. Instead, the interface circuit may rely on a clock signal received over the interface from another device in order to transfer data between the interface and an internal buffer. Furthermore, the interface circuits can rely on a clock signal provided by a bus for a device the interface circuit is located in to transfer data between the internal buffer and the bus. The internal buffer can be, but is not limited to a FIFO. Alternatively, it can be a stack or another data structure. The internal buffer can be configured so that each of its multiple of cells is a shift register. Thus, a preparatory step of moving a byte of data from the buffer to a separate shift register can be avoided.
Abstract:
A touch controller for controlling a touch sensor panel is provided. The touch controller includes a plurality of sense channels that receive sensor signals from the touch sensor panel, a drive system that generates a plurality of stimulation signals based on a supply voltage on the order of digital logic level supply voltages, the stimulation signals for simultaneously stimulating multiple drive lines of the touch sensor panel, and a channel controller that controls the sense channels and the drive system. The plurality of sense channels, the drive system, and the channel controller are formed on a single chip.
Abstract:
A method and system for managing power in a computer system is disclosed. In one embodiment the method includes providing output signals from a sensor panel to a controller, wherein the controller includes a data bus and a plurality of devices communicatively coupled to the data bus; monitoring an activity level on the data bus by monitoring bus access requests by one or more of the plurality of devices; and reducing or shutting off a bus clock frequency if there is reduced or no activity on the bus for a predetermined period of time.