摘要:
Techniques for mitigating interference in a wireless communication system are described. In an aspect, pertinent transmission parameters for a served UE may be sent to at least one interfered UE to support interference mitigation. In one design, information for at least one transmission parameter for a data transmission sent by a first cell to a first UE may be transmitted to at least one UE served by a second cell to enable the at least one UE to perform interference mitigation for the data transmission sent by the first cell to the first UE. The information may be transmitted by either the first cell or the second cell. In another aspect, a cell may send transmission parameters for a UE via a pilot. In yet another aspect, scrambling may be performed by a cell at symbol level to enable an interfered UE to distinguish between modulation symbols of desired and interfering transmissions.
摘要:
Techniques for relaying transmissions in a wireless communication network are described. In one design, a relay may receive at least one assignment for a packet, which may be sent to the relay or intercepted by the relay. The relay may receive at least one transmission of a packet sent from a transmitter to a receiver. The relay may process the at least one transmission to decode the packet and may generate at least one additional transmission of the packet after correctly decoding the packet. The relay may send the at least one additional transmission of the packet to the receiver. The transmission(s) and the additional transmission(s) may be HARQ transmissions with different redundancy information for the packet. The transmitter may send transmissions until an acknowledgement (ACK) is received from the receiver or the relay. The relay may send additional transmissions until an ACK is received from the receiver.
摘要:
A method to mitigate interference in a wireless system is provided. The method includes processing a set of radio network identifiers and limiting a number of hypotheses associated with the radio network identifiers in order to mitigate interference in a wireless network. In another aspect, the method includes processing a set of hypotheses and limiting the set of hypotheses by limiting a number of downlink grants to a common space, limiting the number of downlink grants to a number of instances, or limiting the number of grants to a physical downlink control channel (PDCCH) type. In yet another aspect, the method includes processing a downlink set and generating a target termination level for the downlink data set, the termination level associated with a Hybrid automatic repeat-request.
摘要:
Systems and methods of scheduling sub-carriers in an OFDMA system in which a scheduler takes into account channel conditions experienced by the communication devices to optimize channel conditions. The scheduler can partition a set of sub-carriers spanning an operating bandwidth into a plurality of segments. The segments can include a plurality of global segments that each includes a distinct non-contiguous subset of the sub-carriers spanning substantially the entire operating bandwidth. One or more of the global segments can be further partitioned into a plurality of local segments that each has a bandwidth that is less than a channel coherence bandwidth. The scheduler determines channel characteristics experienced by each communication device via reporting or channel estimation, and allocates one or more segments to communication links for each device according to the channel characteristics.
摘要:
Systems and methods of scheduling sub-carriers in an OFDMA system in which a scheduler takes into account channel conditions experienced by the communication devices to optimize channel conditions. The scheduler can partition a set of sub-carriers spanning an operating bandwidth into a plurality of segments. The segments can include a plurality of global segments that each includes a distinct non-contiguous subset of the sub-carriers spanning substantially the entire operating bandwidth. One or more of the global segments can be further partitioned into a plurality of local segments that each has a bandwidth that is less than a channel coherence bandwidth. The scheduler determines channel characteristics experienced by each communication device via reporting or channel estimation, and allocates one or more segments to communication links for each device according to the channel characteristics.
摘要:
Systems and methods of scheduling sub-carriers in an OFDMA system in which a scheduler takes into account channel conditions experienced by the communication devices to optimize channel conditions. The scheduler can partition a set of sub-carriers spanning an operating bandwidth into a plurality of segments. The segments can include a plurality of global segments that each includes a distinct non-contiguous subset of the sub-carriers spanning substantially the entire operating bandwidth. One or more of the global segments can be further partitioned into a plurality of local segments that each has a bandwidth that is less than a channel coherence bandwidth. The scheduler determines channel characteristics experienced by each communication device via reporting or channel estimation, and allocates one or more segments to communication links for each device according to the channel characteristics.
摘要:
Systems and methods of scheduling sub-carriers in an OFDMA system in which a scheduler takes into account channel conditions experienced by the communication devices to optimize channel conditions. The scheduler can partition a set of sub-carriers spanning an operating bandwidth into a plurality of segments. The segments can include a plurality of global segments that each includes a distinct non-contiguous subset of the sub-carriers spanning substantially the entire operating bandwidth. One or more of the global segments can be further partitioned into a plurality of local segments that each has a bandwidth that is less than a channel coherence bandwidth. The scheduler determines channel characteristics experienced by each communication device via reporting or channel estimation, and allocates one or more segments to communication links for each device according to the channel characteristics.
摘要:
Systems and methodologies are described that facilitate identifying resources upon which an acknowledgment can be sent or received in a wireless communication environment that leverages coordinated multi-point (CoMP). The resources can be identified based upon a criterion that can be identifiable to a non-anchor cell base station (as well as an anchor cell base station, a mobile device, etc.). The criterion can be an identifier corresponding to a mobile device, where the identifier maps to a predetermined set of resources. Examples of the identifier can include a media access control identifier (MACID), a cell radio network temporary identifier (C-RNTI), a short C-RNTI, etc. Further, the criterion can be physical resources corresponding to a transmission, where the acknowledgment is responsive to the transmission. Moreover, the acknowledgment can be sent or received in connection with a cooperation technique (e.g., joint transmission via inter-site packet sharing, cooperative beamforming, cooperative silence, . . . ).
摘要:
A communication system comprises evolved base nodes (eNBs) communicating via an over-the-air (OTA) link with low mobility user equipment (UE). A network can utilize the eNBs for cooperative beam shaping for interference nulling based upon a number of factors UE (e.g., coordinated multi-point (CoMP) optimization for feedback, quality of service (QoS), fairness, etc.). The UE advantageously transmits multiple description coding (MDC) that supports a determination by the eNBs that coherent channel conditions (e.g., frequency and/or time invariance) exists for combining feedback reports to realize reduced quantization error. In addition, the MDC feedback reports still support incoherent channel states in which each report can be used individually for interference nulling/beamforming. MDC can be performed with one codebook or a plurality of codebooks.
摘要:
Certain aspects of the present disclosure support techniques for cooperative beamforming based on inter-cell coordination. Signaling design allows coordinated downlink transmissions with reduced inter-cell interference.